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Abstract

We propose to incorporate Shapley values themselves as latent representations
in deep models. This intrinsic explanation approach enables (1) layer-wise ex-
planations, (2) explanation regularization of the model during training, and (3)
fast explanation computation at test time. We define the Shapley transform that
transforms the input into a Shapley representation given some scalar functions. We
operationalize the Shapley transform as a neural network module and construct
both shallow and deep networks, called SHAPNETS, by composing Shapley mod-
ules. We prove that our Shallow SHAPNETs compute the exact Shapley values and
our Deep SHAPNETs maintain the missingness and accuracy properties of Shapley
values. We showcase on synthetic and real world datasets the three new abilities of
our SHAPNETs while maintaining reasonable classification accuracy.

1 Introduction

While Shapley values have been shown to be the most theoretically-grounded additive feature
attribution explanation methods, the exact (or even approximate) computation of Shapley values
is challenging due to the exponential time complexity. Thus, several approximation methods have
been proposed [1} 12, 13]]. To avoid approximation, the model class could be restricted [4]. However,
even if the computational drawback is overcome, the Shapley values cannot aid in model design or
training. On the other hand, Generalized Additive Models (GAM) can be seen as interpretable model
that exposes the exact Shapley values directly, where the prediction and the corresponding exact
SHAP explanation can be computed simultaneously. However, GAM models are inherently limited
in representational power, particularly for data like images where deep networks are state-of-the-art.
We present related works that motivated our work above and in the text where appropriate. Due to

space limit, for an extended literature review, we refer to

To overcome these drawbacks, we propose to incorporate Shapley values themselves as learned latent
representations (as opposed to post-hoc) in deep models—thereby making Shapley explanations
first-class citizens in the modeling paradigm. Intuitive illustrations of such representation are provided

in in the appendix and detailed discussion in [subsection 2.1l We summarize our contributions:

* We formally define the Shapley transform and prove a simple but useful linearity property for
constructing networks. We also develop important extensions of the base case to enhance the
representational power of the transform.

* We develop a novel network architecture SHAPNET, which include Shallow and Deep SHAPNET,
that intrinsically provides layer-wise explanations in the same forward pass as the prediction.

* We prove that a Shallow SHAPNET explanations are the exact Shapley values and prove that
Deep SHAPNET explanations maintain the missingness and local accuracy properties.

* We propose a novel explanation regularization on Shapley values of the model during training.

1st NeurIPS workshop on Interpretable Inductive Biases and Physically Structured Learning (2020), virtual.



* We demonstrate empirically that our SHAPNETs can provide new capabilities such as layer-wise
explanations and novel explanation regularizations while maintaining comparable performance
to other deep models. We also show that our method compares favorably with Shapley-based
post-hoc explanation methods.

2 Shapley explanation networks

Background Given a model C' : RY — R, additive feature-attribution methods form a linear
approximation of the function over simplified binary inputs, 2z € {0, 1}%, indicating the “presence”

and “absence”, respectively: i.e., a local linear approximation D(z) = ag + Z;i:l a;z;. While there
are different ways to model “absence” and “presence”, in this work, “presence” means that we keep
the original value whereas “absence” means we replace the original value with a reference value,
validated in [S] as Baseline Shapley. Denote the reference vector for all features by 7, then we can
define a mapping between z and x as ¥, .(2) = 2Oz + (1 — z) ©r, where © denotes element-wise
product (e.g., ¥4 ([0, 1]) = [r1, z2]). [1]] propose three properties that additive feature attribution
methods should satisfy: local accuracy, missingness, and consistency (see [Appendix Alfor details).

Definition 1 (SHAP Values [1]]). SHAP values are defined as:
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where |Z| is the number of non-zero entries, z \ i means z; = 1 forall j #iand z; =0, 2 C z \ i
represents all Z whose non-zeros are subsets of the non-zero entries of z\i.

2.1 Shapley transform and Shapley representation

We now present various definitions and properties to describe our approach including the Shapley
transform, the Shapley representation, and a Shapley module.

Definition 2 (Shapley transform). Given a c-tuple of scalar functions f(:©) & [f(1) ... ()] ¢ Fe
where F = {f: R? s R}, we define the Shapley transform Q: (R? x F¢) s R*? 10 be:
qb(f(l)?w)T ¢1(f(1)7(l:) ¢d(f(l)vw)
Qa, f1) = : = : : , 2)
¢(f(c)am)T ¢1(f(c)7m) ¢d(f(c)7m)
where ¢(f(j)7 x) € R? for 1 < j < cis the Shapley value vector of T with respect to function i
Definition 3 (Shapley representation). Given a tuple of functions ) as in and an input
instance x, we simply define a Shapley representation Z € R**? to be: Z = Q(z, f (1”)).
Remark 4 (Channel dimension of representation). We will denote the dimension ¢ (rows of the
representation) the channel dimension as an analogy to the channel dimension in images.
Lemma 5 (Linear transformations of Shapley transforms are Shapley transforms). The linear trans-
form, denoted by a matrix A € RE e, of a Shapley representation, Z L Oz, f19), is itself a
Shapley transform for modified functions f e e,
AZ = AQ(w, f10) = Q(a, F)) where f¥)(z) = al f1) (@), 3)
ay € RC is the k-th column of A, and 9 (x) 2 [fV(x), -, £ (x)] € Re.
Definition 6 (Shapley Module). Given an arbitrarily complex function f9): R* — R parameterized
by a neural network, and a reference vector r € R%, a Shapley module F: R? — R? is defined
as: F(@| f0),1) 2 [y (fD, )., 6a(fD),2)]" , where ¢:(fD,@) = 0 ifi € D(FD)), where
D(fW)) = {i:Va;, 0fY) J0x; = 0} is the dummy set and its complement, the active set, A(f0)).

With low cardinality for the active sets (e.g., the function ignores all but 2 variables), we can make the
the computation for Z in[Def. 3|tractable and the Shapley representation itself will be row-wise sparse.
Examples of a Shapley module with 2 inputs can be seen in[Fig. 5]in the appendix. Additionally, we
can extend our Shapley transform to the case of vector-valued functions and tuples of vector valued
functions as we detail in|Remark 15| & [Remark 16|in the appendix.




2.2 Shallow SHAPNET

To aid in our notation, we briefly define a simple /inear dimension-wise summation operator.
Definition 7 (Dimension Sum Operator sum!®)). Given an input tensor X € R1x@2xas" gymle;]
will denote an operator that sums along the j-th dimension corresponding to the letter in brackets.

For example, if X € R*?, then sum[?(X) = 3°¢_, &;. We present our Shallow SHAPNET and its

accompanying which is an extension of [Lemma 5| with complete proof in
Definition 8 (Shallow SHAPNET). A Shallow SHAPNET G is defined as

d ¢
G(z) = suml o g(a; F)) = sum!¥) o (sum!? o Q(z, F1)) =D "N i (fV, ), @

i=1 j=1
where g(x; f1©)) will be called the Shallow SHAPNET explanation.
Theorem 9. Shallow SHAPNETs compute the exact Shapley values, i.e., g;(x; f19) = ¢;(G, x).

An example of a Shallow SHAPNET is in[Fig. 5]in the appendix.

2.3 Deep SHAPNET

To enable inter-layer Shapley representations within a deep model, we construct deep SHAPNETSs by
cascading the output of Shallow SHAPNETs from [Def. 8] However, given the extension to tuples of
vector-valued functions in appendix), the Shapley representation Z € R"*¢ is a matrix,
and that would mean the next Shallow SHAPNET layer inside the deep SHAPNET would have a
matrix as input (as opposed to a feature vector). This is done with the generalized Shapley Transform
(denoted as S) detailed in[Def. 18]in the appendix.

Definition 10 (Deep SHAPNET). A Deep SHAPNET H is defined as a cascade of Shallow SHAPNETSs
with generalized Shapley transform H.:

H = sum!®¥ o h = sum!®¥ o sum(? 0 S 6 sum!? 0 STV ... 6 sum!¥ 0 §@ o suml o Q, 5

where h(x) is known as the Deep SHAPNET explanation and all the reference values are set to 0
except for the first Shapley transform Q) (whose reference values will depend on the application).

We present the theoretical properties about Deep SHAPNETs explanations (proof in[Appendix E):
Theorem 11. The Deep SHAPNET explanations h(x) satisfy both local accuracy and missingness.

2.4 Explanation regularization during training

One of the important benefits to SHAPNETS is that we can regularize the explanations during training.
The main idea is to regularize the last layer explanation so that the model learns to attribute features
in ways aligned with human priors—e.g. sparse or smooth. For ¢; regularization, we would like the
model to focus on a small set of features. For /., regularization, the idea is to smooth the Shapley
values so that none of the input features become too important individually. Finally, with ad-hoc
knowledge on the attribution for the task at hand, the user could specify specific regularizations.

3 Experiments & Visualizations

With MNIST [6]], FashionMNIST [7]], and Cifar-10 [8]], we (1) validate that our models can be quite
expressive despite the intrinsic explanation design, (2) demonstrate that our intrinsic SHAPNET
explanations perform better than posthoc explanations, and (3) highlight the novel ability of layer-
wise explanations and explanation regularization on Shapley values. Extensive experiments are done

in lower dimensional datasets and details provided in[Appendix C| More details in

SHAPNET model performance We report classification accuracies on MNIST [i6], FashionM-
NIST [7]], Cifar-10 [8] as 99.50%, 91.95%, and 82.06%, respectively. While there is some gap
between state-of-the-art for image data, our image-based deep SHAPNET models can indeed do rea-
sonably well even on these high-dimensional non-linear classification problems, all while providing

fundamentally new abilities as explored later. Details in|Appendix J|
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Figure 1: Our intrinsic Deep SHAPNET explanations perform better than post-hoc explanations
in identifying the features that contribute most to the prediction as seen in this figure showing the
accuracy after removing the top k features identified by each explanation method. Figure on the right
is a zoomed-in version to show more detail for the first 120 features.

Intrinsic SHAPNET explanations compared to post-hoc explanations First, because our intrinsic
SHAPNET explanations are simultaneously produced with the prediction, the explanation time is
merely the cost of a single forward pass (A wall-clock time experiment in[Appendix GJ). For image-
based data, we evaluate our high-dimensional explanations based on dropping the top-k features as
identified by the explanation and measuring the remaining accuracy of the classifier. We compare
Deep SHAPNET explanations with DeepLIFT [9]] (scaled to get DeepSHAP [[1]), Integrated Gradients
[10], Inputx Gradients[11] and vanilla gradients adjusted for signs. As shown in Deep
SHAPNET offers high-quality explanations as the model’s accuracy dropped the fastest.

New capability: layer-wise explanations With the layer-wise explanation structure, we can probe
into the Shapley representation at each stage of a Deep SHAPNET as in[Fig. 2] We also provide a set
of pruning experiment shown in[Fig. 7] of [Appendix I} where we show how pruning the values in the
Shapley representations of different layer changes model performance.

New capability: Explanation regularization during training For MNIST data, we visualize the
explanations from different regularization models in For a more rigorous study of regularizers
on image datasets, we perform the top-k feature removal experiment with different regularizers in
which shows that our regularizers produce some model robustness towards missing features.
Moreover, [Fig. 7]in[Appendix I|also shows that ¢; regularized model achieves the best result under
value pruning across different layers and /., performs the worst. Details are in

Tnputs Progression

Figure 2: Deep SHAPNETS enable us to peek into the progression of feature importance during the
forward pass with layer-wise explainability. The blocks appear in early stages presumably because
the first two layers computes the Shapley representations in a relatively small neighborhood, and
since all the neighboring pixels share the same values, they output the same blocks. We simply take
the average of the contribution over all channels in the Shapley representation and scale to [—1, 1].

Expanded figures (Fig. 1 i|, Fig. iZ], Fig. if§|, & [Fig. 14) in[subsection J.5| with discussions.
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Figure 3: MNIST SHAPNET explanations for different regularizations qualitatively demonstrate the
effects of regularization. We notice that ¢; only puts importance on a few key features of the digits
while /., spreads out the contribution over more of the image. Red and blue correspond to positive
and negative contributions respectively. More visualization of the explanations, including the other

classes and more in-depth discussion, can be found in[subsection J.4



Broader Impact

In our work, we proposed a complex neural network model that is intrinsically explainable, which
allows for explanation regularization. This answers two questions (1)“Why?”, as people try to figure
out why a neural network is making a specific decision, and (2) after an explanation for a complex
neural network model is generated, the next natural question would be “What next?”.

Who may benefit from this research

Those deep learning practitioners or users who value explainability and who want to know how to
improve their model based on explanations can largely benefit from this research. This may include
practitioners of critical tasks, as our research provides a way to answer both “why?” and “what
next?”, which are important questions to ask and answer for tasks with high stakes.

From an ethical point of view, our research allows one to, during training, limit or entirely eliminate
the influence of elements of human social biases like race, gender, or age, further promoting equality
and fairness in machine learning systems.

Who may be put at disadvantage from this research

We note that our work provide a degree of freedom which could help or hurt depending upon who
use it. If the work of this research is deployed, one can argue that people expecting the highest
performance of a system may be disappointed as our research limits the model choices.

Also, one could argue the ability to eliminate certain feature contribution may allow practitioners
with ill-intentions to build models that might escalate the discrimination.

Consequences of failure of the system

In the case of a failure of our system, where we would assume it results in non-ideal approximation
to the true Shapley values, as investigated by literature [12]], a malicious builder can fool the user
by developing a model whose approximation of Shapley values are so off that the underlying model
is actually discriminating against people without the approximation of the explanation showing so.
However, since the work in [[12] relies on methods who requires out-of-sample inputs, which ours do
not, fooling our model can be a bit more intricate and complex.

Whether the task/method leverages biases in the data

Our work allows the users to leverage biases as well as to limit or eliminate those. As discussed
previously, the impact of such ability largely depends on the intent of the users.
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Figure 4: Shapley representation of two-dimensional functions. Such representation can span beyond
one dimensional manifold and depends on both the inner function and the reference values. In both
groups, the gray-scale background indicates the respective function value while the rainbow-scale
color indicates correspondence between input (left) and Shapley representation (right) along with
function values—red means highest and purple means lowest function values. The red cross in the

input plots represents the reference values for both inputs. More details in

A Three SHAP properties

The first property called local accuracy states that the approximate model D at z = 1 should match
the output of the model C' at the corresponding x,

Definition 12 (Local Accuracy). Suppose C' is the true model, x is any target point, D is the model
explanation as a simplified model and z is the simplified binary vector corresponding to x, local
accuracy is the property such that

d
Clx)=D(z)=ao+ Y a:z.

The second property called missingness formalizes the idea that features that are “missing” from the
input x (or correspondingly the zeros in z) should have zero attributed effect on the output of the
approximation,i

Definition 13 (Missingness).

zz=0=a; =0.

Finally, the third property called consistency formalizes the idea that if one model always sees a
larger effect when removing a feature, the attribution value should be larger [[1]].

B Notes on SHAPNET

Remark 14 (Row-wise sparsity curbs computation). One of the main bottleneck of computing
Shapley values is the exponential complexity in the number of input features that renders large-scale
computing of Shapley values infeasible. To alleviate such issue, we would like to promote the
sparsity in row-wise computation. Consider a function f depending on a subset of input features,

(e.g. f(j)(;vl,x27x3) = 5x9 + x3 only depends on x5 and x3), we will refer to such a subset
active set , A(f) (A(f)) = {2, 3} for the example above) and its complement dummy set, D(f)
(D(fU)) = {1} for the above example). In principle, we would like to keep the cardinality of the
active set low: |A( f G ))’ < dforl < j < ¢ s.t. we can limit the computational overhead, as
features in the dummy set will be trivially assigned Shapley values of 0’s.

Remark 15 (Vector-valued functions as tuples). & can be trivially extended to
vector-valued functions: f: R? — R¢, where we simply view each output as a scalar function, i.e.,

f9 () = [f(z)];. As an example, suppose that f is a multi-class classifier with ¢ classes, then each
of the f(9) would be the logits for the j-th class.

Remark 16 (Tuples of vector-valued functions: the meta-channels). Suppose we are to compute the
Shapley Transform of a tuple of vector-valued functions (f(V)(x),--- , f(9)(x)) where fU): R
R™, we will need to compute ¢;(f7), ) for each output of £(). In this case, we have again created
another dimension as ¢;(f @), x) now would become a vector instead of remaining as a scalar (by



Shallow SHAPNET, G Deep SHAPNET, H

g

Shapley Transform, Q

- — — —1

r
o (FD z
| F(l)(zl,12)<;;(rm_z

T [, aa) o (PO ) D
T2 F9(a1,72) ’ 2(f9), @) F(Z)(11713)<‘\<:)‘2(Fz;:z
gk £ (ry, 22) FO)(2) 2\ FO) (g, n)(ﬁ:g?:;:)
ol g0y 7 o P a2 S0 D)
. o) b ((5)
:z ijw":: ™ F6) (zzm){jﬁi;;;:; ‘ Edge weight 0“1
NEO G - ey

By construction ! | |

s Edge weight of —

63(f9), @) = ou(f9, @) = 0 |
! We prove that
L 0i(2) = 6., 2)

T Edge weig
Shapley Representation, Z

with 0's not shown

Figure 5: An example construction of SHAPNETSs: we construct SHAPNET from simple Shapley
modules (left) which explicitly compute the SHAP explanation values for the arbitrary function
f. Shallow SHAPNET are based on computing many Shapley modules in parallel—in particular,
we show computing all pairs of features. Deep SHAPNET are composed of Shallow SHAPNET
blocks where the output explanation of the previous layer is used as input for the next layer. We
show an example using disjoint subsets for each Shallow SHAPNET layer and then using a butterfly
permutation as in the Fast Fourier Transform (FFT) algorithm to enable complex dependencies. The
edge weights shown here are direct result of with d = 2.

computing the Shapley value for each of the output dimensions of £()). We coin this the meta-
channel dimension, as it is the channel of channels: for each of the ¢ channels of one feature, we have
n scalars to represent it. Therefore, the co-domain of Shapley transform becomes R(¢xn)xd
where the Shapley representation Z resides. For a concrete example, superpixel representation of
images has groups (features in our case) of pixels (channels in our case), and each pixel inside the
groups has RGB channels (meta-channels here).

Remark 17. To achieve this, we generalize Shapley transform S by modifying ¥, ,.:

Definition 18 (Generalized Shapley Transform). Shapley transform is generalized by simply changing
the mapping V. . in the computation of@(f(j), x) as in lDef. 1|and in lDef. 2| tobe Vg . : R? —
R that treats each of the d vectors as a single input feature. In other words, with ,r € R™"*4,
z€RL 1 <i<n, 1< j<dindexing rows and columns, respectively:

Var(2) = (@i - 2+ (1= 2j) - 7450, (6)
combined with, of course, the extension we discussed in[Remark 16|

Deep SHAPNET with Disjoint Pairs and Butterfly Connections It is immediately obvious that
the computational graph determined by the choice of c-tuple functions f(* ©) dictates how the features
interact with each other in a in Shallow SHAPNETSs and hence a Deep SHAPNET. For our experiments,
we focus on one particular construction of a Deep SHAPNET based on disjoint pairs (active sets
of Shapley modules do not overlap: ﬂ;zlA( @) = () in each layer and a butterfly permutation
between each layer to allow interactions between many different pairs of features—similar to the Fast
Fourier Transform (FFT) butterfly construction. This also means that the cardinality of the active
set of all the Shapley modules are set to 2, making the overhead for computing the Shapley values
roughly 4 x that of the underlying function. An example of this specific deep network construction
can be seen on the right of We emphasize that this permutation is one of the choices that
enable fast feature interactions for constructing deep SHAPNETs from Shallow SHAPNETs. We do
not claim it is necessarily the best but believe it is a reasonable choice if no other assumptions are
made. One could also construct SHAPNETSs based on prior belief (an example for images below).

Deep SHAPNET for Images Here we describe one of the many possibilities to work on image
dataset with SHAPNETs. This is largely inspired by works including [13} 14} [15]. Still, the Deep
SHAPNET here consists of different layers of Shallow SHAPNETs. We begin by describing the
operations in each of the consecutive Shallow SHAPNETSs, and then cascading the output from one
stage to the next.
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Table 1: Model performance where the loss is shown for the synthetic dataset (lower is better) and
classification accuracy for the other datasets (higher is better). (averaged over 50 runs)

Models . N . Models .
m Deep SHAPNET DNN (eq. comp.) DNN (eq. param.) ~ Shallow SHAPNET ~ GAM m Deep SHAPNET for Images

Synthetic (loss) 3.37e-3 3.93e-3 6.62¢-3 3.11e-3 3.36e-3  MNIST 0.992
Yeast 0.585 0.576 0.575 0.577 0.597 FashionMNIST 0.912
Breast Cancer 0.959 0.966 0.971 0.958 0.969 Cifar-10 0.820

Canonical convolution operation is composed with three consecutive operations: sliding-window
(unfolding the image representation tensor to acquire small patches matching the the filter), dot product
between filters and the small patches from the images, and folding the resulting representation into
the usual image representation tensor. We merely 1) replace the dot product operation with Shapley
modules (similar to that in [13]]) and 2), since we have the same number of pixels, we can put the
corresponding output vector representation R™ back in the location of the original pixel. To create
a hierarchical representation of images, we use a-trous convolution with increasing dilation as the
Shapley transform goes from one stage to the next, similar to [16}17]. To reduce computation, we
can choose a subset of the meta-channels of each pixels to take as inputs, similar to [14]]. For the
final prediction, we do a global summation pooling, given that the final Shapley representation has
the same number of meta-channels as the number of classes. The specific structure of the c-tuple
functions of each Shallow SHAPNET and more detailed discussion on this entire model can be found

in [subsection 1.3l
C Lower dimensional dataset experiments

Datasets We create a synthetic dataset by sampling the input v € [—0.5, 0.5]'® from the uniform
distribution where the true regression model is f(v) = [], v; + Y, v7 + 0.05¢, with € sampled from
a standard normal distribution. We choose five real-world datasets from Yeast (d = 8, [18]) and
Breast Cancer Wisconsin (Diagnostic) (d = 30 [18]).

C.1 Model Performance

We define DNN models that are roughly comparable in terms of computation or the number of
parameters—since our networks require roughly four times as much computation as a vanilla DNN
but share many parameters. For our comparison DNNs, we use a general feedforward networks.
Results are in[Table 1]in[Appendix G| While there is a very slight degradation in performance, our
lower-dimensional models are comparable in performance even with the structural restriction.

C.2 Intrinsic SHAPNET explanations compared to post-hoc explanations

For the lower-dimensional datasets, we validate our intrinsic explanations compared to other SHAP-
based post-hoc explanations by computing the difference to the true SHAP values (which can
be computed exactly or approximated well in low dimensions). Our results show that Shallow
SHAPNET indeed gives the true SHAP values up to numerical precision as proved by and
Deep SHAPNET explanations are comparable to other post-hoc explanations (result table and more
discussion in[subsubsection C.2.1).

C.2.1 Lower-dimensional comparison between SHAPNET explanations and post-hoc
explanations

For lower-dimensional datasets, we seek validation for the explanations h(x) provided by Deep
SHAPNETS by comparing to the true Shapley values of our models (which can be computed exactly
or aproximated well in low dimensions). Our metric is the normalized ¢; norm between the true
Shapley values denoted ¢ and the explanation denoted -y defined as:

10—l
U y) = =" (7
d Zl ¢z
Note that we measure the average difference from vector-output classifiers by means discussed in
[subsubsection C.2.2| The experimental setup and results are presented in[subsubsection C.2.3|
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C.2.2 Comparing SHAP approximation errors with vector output models

To compare the approximation errors for every output of the model, we use a weighted summation of
the explanations for different outputs, where the weights are the models’ output after passing into the
soft-max function. Thus, we up weight the explanations that have a higher probability rather than
taking a simple average. Thus, in the extremes, if the predicted probability for a label is zero, then
the difference in explanation is ignored, while if the predicted probability for a label is one, then we
put all the weight on that single explanation.

Concretely, for a classification model C' : R? s R™, where d is the number of input features and n
is the number of classes, we have the output vector of such model with an input instance = € R¢
as C (z) € R". For each output scalar value [C (z)];, we compute the approximation of the SHAP
values w.r.t. that particular scalar for feature indexed ¢, denoted by *y(j ), and hence its corresponding
errors as measured in normalized ¢, distance as discussed in|[Eqn. 7} £ gj ). The final error measure
that we compare between classifiers /7 is simply a weighted sum version of the normalized ¢;:

n

1= Z [softmax (C (w))]J -éﬁj),

Jj=1

where the softmax is taken on the non-normalized output of the classifiers. Note that ¢} is also taken
on the raw output.

C.2.3 Setup and results

Because the explanation difference from SHAP is independent of the training procedure but solely
depends on the methods, we compare the performance of the explanation methods on untrained models
that have randomly initialized parameters (i.e., they have the model structure but the parameters are
random)—this is a valid model it is just not a model trained on a dataset. Additionally, we consider
the metric after training the models on the synthetic, yeast, and breast cancer datasets. Note that
for even a modest number of dimensions, computing the exact Shapley values is infeasible so we
use a huge number of samples (2'%) with the kernel SHAP method to approximate the true Shapley
values as the ground truth for all but the Yeast dataset, which only requires 28 samples for exact
computation. Note that the extended Shapley value (ext.) requires 2! times of model evaluation for
a single explanation which is already extremely expensive, and thus included merely for comparison.
Results of the average difference can be seen in[Table 2] From the results in[Table 2] we can see that
indeed our Shallow SHAPNET model produces explanations that are the exact Shapley values (error
by floating point computation) as[Theorem 9]states. Additionally, we can see that even though our
Deep SHAPNET model does not compute exact Shapley values, our explanations are actually similar
to the true Shapley values.

We also provide in[Table 3| the standard deviation of the approximation errors as in[Table 2] These are
the same runs as those in[Table 2]

Explaifons Average diiference from exact bh%ple values Tor ditferent models
m Ours DeepSHAP  Kernel SHAP (77) Kernel SHAP (def.) Kernel SHAP (ext.)

Untrained models (100 independent trials each entry)

Deep SHAPNET 1.29¢-06 2.89e-05 1.42e+03 2.13e+05 5.00e-11
Shallow SHAPNET 2.97e-07 0.802 0.0733 4.05e-03 1.05e-03
Regression models on synthetic dataset (20 independent trials each entry)
Deep SHAPNET 4.99¢-03 3.71 4.91e-03 3.05e-04 2.26e-05
Shallow SHAPNET 4.19e-08 3.88 4.05e-03 2.39e-04 2.75e-05
Classification models on Yeast dataset (50 independent trials each entry)
Deep SHAPNET 0.0504 0.307 0.01467 0 0
Shallow SHAPNET 2.20e-07 0.516 0.0132 0 0
Classification models on Breast Cancer Wisconsin (Diagnostic) (50 independent trials each entry)
Deep SHAPNET 0.0167 0.120 0.0369 4.09e-03 8.05e-04
Shallow SHAPNET 1.20e-04 0.0581 0.0224 1.91e-03 2.03e-04
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Table 3: Standard deviation of Shapley approximation errors on different datasets

Models Explanations () ' DeepSHAP  Kernel SHAP (77)  Kernel SHAP (def.)  Kernel SHAP (ext.)

Untrained models

Deep SHAPNET 0.734 5.23 7.67e+08 4.25e+09 9.20e-03

Shallow SHAPNET 7.55e-07 1.57 0.124 8.02e-03 2.98e-03
Regression models on synthetic dataset

Deep SHAPNET 3.28e-03 5.15 3.13e-03 8.79e-05 2.23e-05

Shallow SHAPNET 3.09e-04 1.28 4.75e-03 1.62e-04 6.33e-06
Classification models on Yeast dataset

Deep SHAPNET 0.105 0.358 0.0288 0 0

Shallow SHAPNET 5.35e-07 0.894 0.0304 0 0

Classification models on Breast Cancer Wisconsin (Diagnoistic)
Deep SHAPNET 0.0104 0.0359 0.0987 3.61e-03 1.72e-03
Shallow SHAPNET 0.0109 0.246 0.0141 1.93e-03 2.91e-04

Table 4: Explanation regularization experiments with Deep SHAPNETs (averaged over 50 runs)

w Yeast Breast Cancer Wisconsin
Metrics o Reg. 1 Reg. NoReg. /(. Reg. ¢ Reg. NoReg.

Coefficient of variation for abs. SHAP  0.768 1.23 1.05 1.28 NaN 2.04
Sparsity of SHAP values 0.003  0.00425 0.00275 0.429 0.841 0.209
Accuracy 0.592 0.592 0.587 0.957 0.960 0.960

C.3 New capability: Explanation regularization during training

We experiment with ¢; and /., explanation regularizations during training to see if the regularizations
significantly affect the underlying model behavior. For the lower-dimensional datasets, we compute
the accuracy, the sparsity, and the coefficient of variation (CV, standard deviation divided by mean)
for our Deep SHAPNET. We see in[Table 4]that our /., regularization spreads the feature importance
more evenly over features (i.e., low CV), ¢; regularization increases the sparsity (i.e., higher sparsity),
and both either improve or marginally degrade the accuracy.

D Proof of Theorem 9 & [Lemma 3|

Proof of[Lemma 3] For each row of W 2 AZ, we can show that it is the Shapley value for f(*)
using the linearity of Shapley values (the original motivating axiom of Shapley values, see [[19]):

wi =Y ar;6(f9,x) = 6> ar; 9, 2) = 6(F P, x). (8)
J J
Combining this result for all rows with we arrive at the result. O

We define a feature selector function (%) as follows:

Definition 19 (Feature selector function). 7(*) : R% — RI”! (for any w € W, where W again
indexes the set of all component Shapley modules in a given Shallow SHAPNET as in |[Def. §) is
defined to select the input features by the index w, which contains the indices of the supposed input
features of F("):

(W) (x) = [z;] where i € w. )
Lemma 20. The composite function F'") for a given Shapley module F(""), defined as
F'w) = pw) o g (w) (10)
has the following Shapley values for its input features

w o (w) e
b (F'(x), @) = SS(F( ),:c) = ifi €w (11

otherwise,
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Proof. This holds since the absence (set to reference values) of a feature does not make a difference
to the final output of F'(*), O

Now we are ready to present proof for[Theorem 9}

Proof. We consider a simpler, and yet more general case: consider where each of the modules defined
in[Def. 6| we first transform any Shapley module F(*) in the given Shallow SHAPNET G to F'(*),
Then, by [Def. 8] the zeros in[Lemma 20]do not make any difference whether to the output of G or its
associated 3;’s, and yet 3;’s are nothing but summations of Shapley values of different F'(*)’s and by

ILemma 5
which completes the proof. O

E Proof of Theorem 11|

Proof. The proof of local accuracy is trivial by construction since #(z) £ sum!¥(h(x)) from

The proof of missingness is straightforward via induction on the number of layers, where the

claim is that if x; = r; (i.e., the input for one feature equals the reference value), then V¢, hEZ) ()=0
(i.e., the pre-summation outputs of the Shapley modules in all layers corresponding to feature ¢ will

all be zero). For the base case of the first layer, we know that if z; = r;, then we know that Zi(l) =0
by the construction of Shapley modules. For the future layers, the inductive hypothesis is then that

if previous layer representation Z (e-1)

p of a feature 7 is 0, then the representation from the current

layer £ for this feature remains the same, i.e., Zi(e) = 0. Because the reference values for all layers
except the first layer are zero, then we can again apply the property of our Shapley modules and

thus the inductive hypothesis will hold for ¢ > 1. Thus, the the claim holds for all layers ¢, and
hi(x) = suml® Z,L-(e) will also be zero—which proves missingness for Deep SHAPNETS. O

F Extended Literature Review

Post-hoc feature-attribution explanation methods, gained traction with the introduction of LIME ex-
planations [20] and its variants [21} 122} 23], which formulate an explanation as a local approximation
to the model near the target instance. LIME attempts to highlight which features were important
for the prediction. Saliency map explanations for image predictions based on gradients also assign
importance to each feature (or pixel) [24, 9]. SHAP explanations attempt to unify many previous
feature attribution methods under a common additive feature attribution framework [1} 4], which is
the main motivation for our work.

Intrinsically interpretable models are an alternative to post-hoc explanation methods. In particular,
GAM [25] and its extension [26, |27]] construct models that can be displayed as series of line graphs
or heatmaps. Because the entire model can be displayed and showed to users, it is possible for a
user to directly edit the model based on their domain knowledge. In addition, [28] proposed an
architecture that are complex and explicit if trained with a regularizer tailored to that architecture. Our
methodology sits in between post-hoc and intrinsic approaches by constructing an explainable model
but using SHAP post-hoc explanation concepts and allowing more complex feature interactions.

Recent works also focus on Shapley value approximations in deep neural nets, where Deep Approxi-
mate Shapley Propagation (DASP) approximates in polynomial time [2], L-Shapley and C-Shapley
do in linear [3]] with the Markov assumption, and our method performs approximation with a
constant complexity, which additionally allows regularizing the explanations according to human
priors and hence modifying the underlying model during training. This falls in line with previous
works [29, 130, [31} 32]] each of which adds an extra term in the loss function measuring the disagree-
ment between the explanations and human priors. [29] proposed to regularize the input gradients
as explanations, which creates the need for second-order gradient. [30] uses Integrated Gradients
(IG) [LQ], which is an extension to Shapley values [3)]. Due to the use of IG, several samples (for one
explanation) are additionally warranted. [31] proposed Expected Gradient to rid of reference values
in IG and suggested the usage of a single sample. [32] adds to this line of work with Contextual
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Table 5: Time for computing explanations (averaged over 1000 runs)

Models
W Deep SHAPNET DNN (eq. comp.) DNN (eq. param.)

Ours 20.47 N/A N/A
Deep SHAP 46.10 83.38 8.56
Kernel SHAP (40) 60.78 130.04 11.52
Kernel SHAP (77) 72.61 201.88 13.53
Kernel SHAP (def.) 598.79 789.08 142.85

Decomposition [33} 34] which avoids the need of computation of second-order gradients and extra
samples. Our work differs with these four in that we do not need a second order gradient and
that we are focusing on the more theoretically-grounded Shapley values. The explanation-related
regularization in [28] differs with ours in that the regularizer is used to promote interpretability and
ours uses regularization to modify the underlying model to conform to prior belief. We also draw
close similarity to works that that attempt to smooth saliency map explanations [35} 10, [36]] which
acts on explanation methods to induce certain properties in explanations but not the actual models.

G Wall-clock time for explanation experiment

To validate the efficiency of computing an explanation, we compare the wall-clock time of our
SHAPNET explanations to other approximation methods related to Shapley-values including Deep
SHAP and Kernel SHAP with different numbers of samples—40, 77, and default (2 x d + 2'1).
The wall-clock computation time in seconds can be seen in We note importantly that this
comparison is a bit odd because other Shapley-value explanation methods are post-hoc explanations,
whereas SHAPNET is both a model and an intrinsic explanation method. Thus, the most fair
comparison in terms of time is to have the post-hoc explanation methods explain our SHAPNET
model as seen in the first column of Nevertheless, we also show the wall-clock times for
the post-hoc methods on our comparable DNNs in columns two and three of [Table 5}—note that
SHAPNET cannot explain other DNNs hence the N/A’s. From the first column, we can see that our
method is inherently faster than the others when applied to our model. However, smaller model (i.e.,
DNN w. equivalent parameters) may come with faster explanations.

H Top-£ feature removal

We conduct a top-k feature removal experiment where the pixels are removed (set to reference values)
based on the order of explanation values, and accuracy of the model on the entire MNIST dataset is

measured. Results are in[Fig. 6]
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Figure 6: Both ¢; and ¢, regularizations often introduce some robustness to the model against
feature removal (the dotted and dashed lines are often above the solid lines). Three different feature
orders are used: 1) most positive to most negative (top-down), 2) most negative to most positive
(reversed), and 3) randomly chosen as a baseline. ¢; regularization puts most importance on the first
100 features with relatively low importance to other features (seen in both top-down and reversed).
¢, regularization improves robustness when removing the top 50 or so features (as seen in the right
figure which is zoomed in on the top 200 features).
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Figure 7: 1) Removing values from earlier layers seems to have a stronger effect on the model’s
performance than removing from later layers. In addition, it seems most of the values can be removed
and retain the accuracy. 2) ¢; regularized model performs better under pruning across all layers
while /., performs the worst, which is expected as it tries to spread out the importance among input
features.

I Pruning experiment

We also conduct a set of pruning (set to reference values) experiment. This is, again, enabled by
the layer-wise explainable property of Deep SHAPNET. Recent work has investigated the usage of
Shapley values for pruning [37], but our work means to showcase the ability even further. Results are

shown in [Fig. 7|

We perform the pruning experiment with all three MNIST-traiend models as discussed in [subsec]
with no, /1, and /., regularizer, respectively. The values are removed (set to reference) by
the order of their magnitude (from smallest to largest). We can see that most of the values might be
dropped and the model performance stays unhinged. Moreover, ¢; seems to have the best robustness
against pruning, which makes sense as it induces sparsity in explanation values. Future works are to
be done on the computational cost reduction under such pruning technique.
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J More experimental details

For all the experiments described below, the optimizers are Adam [38] with default parameters in
PyTorch [39].

J.1 Timing experiments

For the timing is for the untrained (randomly initialized) models with 16 features. The
numbers after Kernel SHAP indicates the number of samples allowed for Kernel SHAP’s sampling
method. Time is measured in seconds on CPU with 1000 independent trials per cell as Kernel SHAP
supports solely CPU from the implementation of the authors of [1]]. The model of the CPU used for
testing is Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz.

We perform explanation on randomly initialized 16-feature Deep SHAPNET model for 1000 rounds.
The 16-feature setup means we will have (16/2) x log, 16 = 32 Shapley modules inside the entire
model spanned out in 4 stages according to the Butterfly mechanism. The inner function f for every
module in this setting is set as a fully-connected neural network of 1 hidden layer with 100 hidden
units. For the two reference models, the model equivalent in computation time has 8 layers of 1800
hidden units in each layer, while the model equivalent in parameters has 11 layers of 123 hidden units
in each layer. The output of the models are all scalars.

J.2  Yeast and Breast Cancer datasets experiment setups

This setup applies for the experiments involving both datasets, including those experiments for model
performance and those that showcase the ability for explanation regularization. The experiments on
the two datasets were run for 10 rounds each with different random initialization and the end results
were obtained by averaging. For each round, we perform 5-fold cross validation on the training set,
and arrive at 5 different models, giving us 50 different models to explain for each datasets. For the
two datasets, we do 9 training epochs with a batch size of 32.

For the preprocessing procedures, we first randomly split the data into training and testing sets, with
75% and 25% of the data respectively. Then we normalize the training set by setting the mean of each
feature to 0 and the standard deviation to 1. We use the training sets’ mean and standard deviation to
normalize the testing set, as is standard practice.

The inner functions of the Shapley modules are fully connected multilayer neural networks. The
first and second stages of two models on the two datasets are identical in structure (not in parameter
values). The first stage modules have 2 inputs and 25 outputs, with a single hidden layer of size 50.
The modules in the second stage have 100 input units and 50 output units with two hidden layer
of size 100. The non-linearity is introduced by ReL.U [40]] in the inner functions. The rest of the
specifics about the inner function are discussed below. Note that the dimensionality of the output
from the last stage differs with that of the input to the next stage, as is expected by Shapley module
where the input has twice the dimensionality of that of the output.

Model for Yeast dataset The Yeast dataset has 8 input features and hence 4 Shapley modules at
each of the log, 8 = 3 stages. Within each stage, the structure of the inner function is identical except
for the parameters. For the Yeast dataset, the third (last) stage comprises four-layer fully-connected
model with inputs from 50 x 2 = 100 units to the number of classes, which is 10, with two hidden
layers of 150 units.

Model for Breast Cancer Wisconsin (Diagnostic) This dataset has 30 input features, which is
not a exponent of 2, but we can still construct a Deep SHAPNET by setting two extra variables to
zero. In fact, in doing so we can simplify the Shapley modules since we know which of the modules
in the network always have one or both of its input being O at all times. To construct the model, we
realize that the number of stages is 5 and the number of modules at each stage is 16. For the Breast
Cancer Wisconsin (Diagnostic) dataset, in the the third stage of the model, we use a model with 100
inputs units and 75 output units with two hidden layers of 150 units. The fourth stage has input units
of 75 x 2 = 150 and output of 100 units with two hidden layers of size 200. The fifth (last) stage has
a input dimension of 200, two hidden layers of 250 units and output of size 10.
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J.3 Specifics for vision tasks
J.3.1 Structure used for vision experiments

For all of the vision tasks, we use the same structure with the exception of input channel counts. We
first define a base structure that we use in different Shallow SHAPNET layers, in each of which we
simply change the number of parameters.

Base structure This structure has 4 hyper-parameters with non-linearity introduced by Swish :

1. Input dimension: This is the number of features d times the number of meta-channels
n. This will determine the dimensionality of input for the underlying function
fU), which is R(4*™) and hence the number of neurons in the first linear layer.

2. Number of hidden layers: This is self-evident by the name. Each of these is Linear-
Swish[41]-LayerNorm[42]. Also, we add residual connections wherever possible.

3. Hidden size: the number of neurons in the hidden linear layers.

4. Output size (n'): the number of output neurons in the final linear layer.

The output of the first linear layer is fed into the hidden layers after activated by Swish function,
which is

Swish(z) !

wish(z) =2 ———

e Fr 41’

where [ is fixed to be 1 in our setting. We found activation functions like Swish and LeakyReL.U
[43] can reduce overfitting in our case as opposed to ReLU.

Note that n’ x d from the previous layer should be matching the Input dimension hyper-parameter
with the exception of factoring out [14} [15], where we take a subset of the meta-channels of the
previous layer’s output representation as the input meta-channels to the current Shallow SHAPNET.

Note that the inner functions are shared within one Shallow SHAPNET. For all of MNIST, FashionM-
NIST, and Cifar-10 dataset, we present our structure in

Table 6: Hyper-parameter settings for each Shallow SHAPNET of a Deep SHAPNET for images. For
Cifar-10, input dimension of the inner function of the first Shallow SHAPNET is 12 (3 x 4), and 4
(1 x 4) for MNIST or FashionMNIST.

Shallow Index Hyper-parameters Input dimension  number of hidden layers  Hidden size  Output size

1 12 0r4 1 64 128
2 256 1 64 64
3 256 2 64 64
4 256 2 64 64
5 512 2 128 10

A-trous convolution A-trous convolution is used for learning hierarchical representations of im-
ages. In our model, the dilation in the sliding window operation is set to double each stage: 1 for the
first, 2 for the second, 4 for the third, 8 for the fourth and 16 for the last stage.

J.3.2 Training recipe

Learning process As discussed before, all the models are trained with Adam in PyTorch with the
default parameters. The batch size is set to 64 for all the vision tasks. No warm-up or any other
scheduling techniques are applied. The FashionMNIST & MNIST models in are trained
for 10 epochs while the MNIST models with which we investigate the new capabilities (layer-wise
explanations & Shapley explanation regularizations) in are trained with just 5 epochs. The
Cifar-10 models are trained for 120 epochs.
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Preprocessing For both MNIST dataset and FashionMNIST dataset, we normalize the training and
testing data with mean of 0.1307 and standard deviation of 0.3081, this gives us non-zero background
and we would therefore set the reference values to 0’s, allowing negative or positive contribution
from the background. Both FashionMNIST and MNIST share the same preprocessing pipeline: 1)
for training dataset, we extend the resolution from 28 x 28 to 36 x 36 and then randomly crop to
32 x 32, and then normalize. 2) for testing data, we simply pad the image to 32 x 32 and normalize
them.

For Cifar-10 dataset, during training, we first pad 4 pixels on four sides of the image and then
randomly crop back to 32 x 32, perform a horizontal flip with probability 0.5, and normalize the
data with means 0.4914, 0.4822, 0.4465 and standard deviaiton of 0.2023, 0.1994, 0.2010 for each
channel, respectively. For testing, we simply normalize the data with the same mean and standard
deviation.

J.4 TIllustrations of explanation regularization experiments

We present visual representations of our models’ explanation on MNIST [(6] dataset in
and [Fig. 10| In all three figures, the gray images from left to right are explanations laid out for all
10 classes from 0 to 9, where the red pixels indicate positive contribution and blue pixels indicate
negative contribution, with magnitudes presented in the color bar below.

From an intuitive visual interpretation, we argue that our explanation regularizations are indeed
working in the sense that /., regularization is indeed smoothing the explanations (to put more weight
on a large number of pixels) and that /1 regularization limits the number of pixels contributing to the
final classification.

One can notice that, by comparing the color bars below the figures, the contribution magnitudes for
{~ and /7 regularized models are lower than those of the unregularized counterpart. We have expected
this to happen as both regularization techniques require to make one or more of the attribution values
to be smaller. However, we note that this change in scale of the attribution values should not impact
the accuracy of the prediction as the softmax operation at the end will normalize across the outputs
for all of the classes.

More interesting discussions are provided in the caption of [Fig. 8} [Fig. 9} and[Fig. 10} and we strongly
encourage readers to have a read.

J.5 Complete visualization for progression in Deep SHAPNET

We also provide results of the progression visualization in three Deep SHAPNETs. To visualize such
explanations, we need to encode a tensor into a single scalar value, in[Fig. 2} [Fig. 11} & [Fig. we
simply take the average of all the explanation values for that pixel. We also provide a version in

which we take the average of magnitude in [Fig. 13| & [Fig. T4] Note that[Fig. 2} [Fig. T1] & [Fig. T3|are

scaled version of the explanations, since the first few layers have relatively lower magnitude in scalar

values in the representation. The unscaled versions are in &
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Figure 8: The explanations produced by our model trained without explanation regularization for all
10 classes. From left to right are class index (also corresponding digits) from O to 9.
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Figure 9: The explanations produced by our model trained with ¢; explanation regularization for
all 10 classes. Our goal with this regularization term is to promote sparsity in feature importance,
which, by comparison with[Fig. 8] and [Fig. 10} one can easily argue has been successfully achieved.
This shows that /; regularization, combined with cross entropy loss, does (almost) remove negative
contribution and only focuses on each digit’s distinguishing features.
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Figure 10: The explanations produced by our model trained with /., explanation regularization for
all 10 classes. However, it is still easy to notice which part of the images contribute positively or
negatively for a particular class. For example, look at the second last digit—a ’2’, where, in the left
part of the digit under where there the stroke starts, there is a positive contribution. This indicates
that the classifier recognize the absense of a complete circle and thereby is happy to classify this digit
as 2. For another instance, if we are focusing on the first column, i.e., the digit 0, we can almost see
a 0-shaped pattern in negative contribution if the input digit is not 0, which means the classifier is
expecting such pattern if the input is to be classified as 0. From the figure, it is easy to conclude that
with ¢, regularization, the contribution among pixels are more laid out and less concentrated than
they would be other wise as shown in|Fig. ]
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Figure 12: The unscaled version of |[Fig. 11
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Figure 14: The unscaled mean of absolute values version of [Fig. 11
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