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Abstract

Exploratory analysis of time series data can yield a better understanding of complex
dynamical systems. Granger causality is a practical framework for analysing
interactions in sequential data, applied in a wide range of domains. In this paper,
we propose a novel framework for inferring multivariate Granger causality under
nonlinear dynamics based on an extension of self-explaining neural networks.
This framework is more interpretable than other neural-network-based techniques
for inferring Granger causality, since in addition to relational inference, it also
allows detecting signs of Granger-causal effects and inspecting their variability
over time. In comprehensive experiments on simulated data, we show that our
framework performs on par with several powerful baseline methods at inferring
Granger causality and that it achieves better performance at inferring interaction
signs. The results suggest that our framework is a viable and more interpretable
alternative to sparse-input neural networks for inferring Granger causality.

1 Introduction

Granger causality (GC) [9] is a popular practical approach for the analysis of multivariate time series,
instrumental in exploratory analysis [19] in various domains [28, 2, 8]. To the best of our knowledge,
the latest powerful techniques for inferring GC [31, 22, 34, 12, 16] do not allow easily exploring forms
of interactions, for example, negative vs. positive effects, or their variability with time and, thus, have
limited interpretability. This drawback defeats the purpose of GC analysis as an exploratory statistical
tool. Negative and positive causal relationships occur in many real-world systems, for example,
gene regulatory networks feature inhibitory effects [10]; therefore, it is important to differentiate
between the two types of interactions. To this end, we propose a novel method for detecting nonlinear
multivariate Granger causality that is interpretable, in the sense that it allows detecting effect signs and
exploring influences among variables throughout time. We comprehensively compare the proposed
framework to several powerful baseline methods [31, 22, 12].

2 Background

Throughout this paper we will consider a time series with p variables: {xt} =
{(

x1t x2t ... xp
t

)>}
. Ac-

cording to [31], nonlinear multivariate GC can be defined as follows. Assume that causal relationships
between variables are given by the following structural equation model:

xit := gi

(
x1
1:(t−1), ..., x

j
1:(t−1), ..., x

p
1:(t−1)

)
+ εit, for 1 ≤ i ≤ p, (1)
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where xj
1:(t−1) is a shorthand notation for xj1, x

j
2, ..., x

j
t−1; εit are additive innovation terms; and gi(·)

are potentially nonlinear functions. We then say that variable xj does not Granger-cause variable
xi, denoted as xj 6−→ xi, if and only if gi(·) is constant in xj1:(t−1). Depending on the form of gi(·),
we can also differentiate between positive and negative Granger-causal effects. If gi(·) is increasing
in all xj1:(t−1), then we say that variable xj has a positive effect on xi, if gi(·) is decreasing in

xj1:(t−1), then xj has a negative effect on xi. GC relationships can be summarised by a directed graph
G = (V,E), referred to as summary graph [26], where V = {1, ..., p} and E =

{
(i, j) : xi −→ xj

}
.

LetA ∈ {0, 1}p×p denote the adjacency matrix of G. The inference problem is then to estimateA
from observations {xt}Tt=1, where T is the length of the time series observed.

In practice, we usually fit a time series model that explicitly or implicitly infers dependencies between
variables. Consequently, a statistical test for GC is performed. A conventional approach [17] used to
test for linear Granger causality is the linear vector autoregression (VAR) (see Appendix A). Recent
approaches to inferring Granger-causal relationships leverage the expressive power of neural networks
[21, 32, 31, 22, 12, 34, 16] and are often based on regularised autoregressive models, reminiscent of
the Lasso Granger method [3] (see Appendix B).

3 Method

We propose an extension of self-explaining neural networks (SENNs) [1] (see Appendix C), a class
of intrinsically interpretable models, to autoregressive time series modelling, which is essentially a
vector autoregression (see Equation 5 in Appendix A) with generalised coefficient matrices. We refer
to this model as generalised vector autoregression (GVAR). The GVAR model of order K is given by

xt =

K∑
k=1

Ψθk (xt−k)xt−k + εt, (2)

where Ψθk : Rp → Rp×p is a neural network parameterised by θk. For brevity, we omit the intercept
term here and in following equations. Ψθk (xt−k) is a matrix whose components correspond to the
generalised coefficients for lag k at time step t. In particular, the component (i, j) of Ψθk (xt−k)

corresponds to the influence of xjt−k on xit. In our implementation, we use K multilayer perceptrons
(MLPs) for Ψθk(·) with p input units and p2 outputs each, which are then reshaped into an Rp×p

matrix. The model defined in Equation 2 takes on a form of SENN (cf. Equation 6 in Appendix C).

Relationships between variables x1, ..., xp and their variability throughout time can be explored by
inspecting generalised coefficient matrices. To mitigate spurious inference in multivariate time series,
we train GVAR by minimising the following penalised loss function with the mini-batch gradient
descent:

1

T −K

T∑
t=K+1

‖xt − x̂t‖22 +
λ

T −K

T∑
t=K+1

R (Ψt) +
γ

T −K − 1

T−1∑
t=K+1

‖Ψt+1 −Ψt‖22 , (3)

where {xt}Tt=1 is a single observed replicate of a p-variate time series of length T ; x̂t =∑K
k=1 Ψθ̂k

(xt−k)xt−k is the one-step forecast for the t-th time point by the GVAR model; Ψt is a
shorthand notation for the concatenation of generalised coefficient matrices at the t-th time point:[
Ψθ̂K

(xt−K) Ψθ̂K−1
(xt−K+1) ... Ψθ̂1

(xt−1)
]
∈ Rp×Kp; R (·) is a sparsity-inducing penalty

term; and λ, γ ≥ 0 are regularisation parameters. The loss function (see Equation 3) consists of
three terms: (i) the mean squared error (MSE) loss, (ii) a sparsity-inducing regulariser, and (iii) the
smoothing penalty term.

This penalised loss function (see Equation 3) allows controlling the (i) sparsity and (ii) nonlinearity
of inferred autoregressive dependencies. As opposed to the related approaches [31, 12], signs of
Granger-causal effects and their variability in time can be assessed as well by interpreting matrices
Ψθ̂k

(xt), for K + 1 ≤ t ≤ T . We support these claims with empirical results in Section 4. In
addition, we provide an ablation study for the loss function in Appendix D.
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3.1 Inference Framework

Once neural networks Ψθ̂k
, k = 1, ...,K, have been trained, we quantify strengths of Granger-causal

relationships between variables by aggregating matrices Ψθ̂k
(xt) across all time steps into summary

statistics. We aggregate the obtained generalised coefficients into matrix S ∈ Rp×p as follows:

Si,j = max
1≤k≤K

{
medianK+1≤t≤T

(∣∣∣∣(Ψθ̂k
(xt)

)
i,j

∣∣∣∣)} , for 1 ≤ i, j ≤ p. (4)

To infer a binary matrix of GC relationships, we propose a heuristic stability-based procedure
[5, 14, 20, 30] that relies on time-reversed Granger causality (TRGC) [33]. Algorithm 1 in Appendix
E summarises the procedure in pseudo-code. During inference, two separate GVAR models are
trained: one on the original time series data, and another on time-reversed data. Consequently,
we estimate strengths of GC relationships with these two models, as in Equation 4, and choose a
threshold for matrix S which yields the highest agreement between thresholded Granger-causal
strengths estimated on original and time-reversed data. The agreement is measured using balanced
accuracy score [7]. Trivial solutions, such as inferring no causal relationships, are discarded. Figure 4
in Appendix E contains an example of this stability-based thresholding applied to simulated data.

To summarise, the proposed procedure attempts to find a dependency structure that is stable across
original and time-reversed data in order to identify significant Granger-causal relationships. In
Section 4, we demonstrate the efficacy of this inference framework. In particular, we show that it
performs on par with the approaches described in [31, 22, 12].

4 Experiments

The purpose of our experiments is twofold: (i) to compare methods in terms of their ability to infer
the underlying GC structure; and (ii) to compare methods in terms of their ability to detect signs of
GC effects. We compare GVAR to 5 baseline techniques: VAR with F -tests for Granger causality
[17] and the Benjamini-Hochberg procedure [6] for controlling the false discovery rate (FDR) (at
q = 0.05); component-wise MLP (cMLP) and LSTM (cLSTM) [31]; temporal causal discovery
framework (TCDF) [22]; and economy statistical recurrent unit (eSRU) [12]. We mainly focus on the
baselines that, similarly to GVAR, leverage sparsity-inducing penalties.

Methods are compared on three simulated datasets: the Lorenz 96 system [15], simulated functional
magnetic resonance imaging (fMRI) time series [29], and the Lotka–Volterra system [4] with multiple
species. Further details about the datasets are given in Appendix F. We evaluate inferred dependencies
against the adjacency matrix of the ground truth GC graph using balanced accuracy (BA) score. We
also examine continuously-valued inference results and compare these against the true structure using
the area under precision-recall curve (AUPRC). Relevant hyperparameters of all models are tuned
to maximise the BA score or AUPRC (if a model fails to shrink any weights to zeros) by searching
across a grid of hyperparameters that control sparsity (see Appendix G for details).

4.1 Inferring Granger Causality

To begin with, we compare methods at inferring GC relationships. Table 1a summarises the perfor-
mance of the inference techniques on the Lorenz 96 time series under forcing constant [15] value
F = 10. All of the methods apart from TCDF are very successful at inferring GC relationships, even
linear VAR. On average, GVAR outperforms all baselines, although performance differences are not
considerable. We observed similar results under F = 40 (see Appendix H).

Table 1b provides results for simulated fMRI time series. Surprisingly, TCDF outperforms other
methods by a considerable margin (cf. Table 1a). It is followed by our method that, on average,
outperforms cMLP, cLSTM, and eSRU in terms of AUPRC and attains a BA score comparable to
cLSTM. Importantly, eSRU fails to shrink any weights to exact zeros, thus, hindering the evaluation
of accuracy and balanced accuracy scores (marked as ‘NA’).

This experiment demonstrates that the proximal gradient descent [24], as implemented by eSRU
[12], may fail to shrink any weights to 0 or shrinks all of them, even in relatively simple datasets. In
general, GVAR performs competitively with the techniques proposed in [31], [22], and [12] on both
of the synthetic datasets.
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Table 1: Performance comparison on Lorenz 96 (a) and simulated fMRI (b) time series. Inference is
performed on each simulation separately, standard deviations (SD) are evaluated across 5 simulations.

(a) Lorenz 96.

Model BA(±SD) AUPRC(±SD)
VAR 0.84(±0.02) 0.83(±0.03)
cMLP 0.96(±0.02) 0.91(±0.05)
cLSTM 0.95(±0.03) 0.93(±0.05)
TCDF 0.71(±0.04) 0.60(±0.05)
eSRU 0.95(±0.02) 0.94(±0.03)
GVAR 0.98(±0.01) 0.98(±0.02)

(b) fMRI.

Model BA(±SD) AUPRC(±SD)
VAR 0.51(±0.02) 0.18(±0.05)
cMLP 0.61(±0.07) 0.19(±0.06)
cLSTM 0.66(±0.05) 0.23(±0.06)
TCDF 0.73(±0.06) 0.37(±0.13)
eSRU NA 0.19(±0.10)
GVAR 0.65(±0.05) 0.29(±0.12)

4.2 Inferring Effect Signs

We now compare methods in terms of their ability to infer signs of GC effects. To this end, we
consider the Lotka–Volterra model with multiple species, wherein predator populations negatively
affect prey and prey positively affect predators (see Appendix F for further details). We focus on BA
scores for detecting positive

(
BApos

)
and negative

(
BAneg

)
relationships.

Figure 1 shows the results for this experiment. Our model (�) considerably outperforms all baselines
in detecting effect signs, achieving nearly perfect scores: it infers more meaningful and interpretable
parameter values. Figure 1b provides a visualisation of generalised coefficients inferred by GVAR for
one simulation of the system. Appendix H contains another effect sign detection experiment on a
trivial linear benchmark, which yields similar results.

(a) Performance comparison. (b) Generalised coefficients.

Figure 1: Inference results for the multi-species Lotka–Volterra system.

Baseline methods rely on interpreting weights of relevant layers that, in general, do not need to be
associated with effect signs and are only informative about the presence or absence of GC interactions.
Since the GVAR model follows a form of SENNs, its generalised coefficients shed more light into
how the future of target variables depends on the past of their predictors. This restricted structure is
more intelligible and yet is sufficiently flexible to perform on par with sparse-input neural networks.

5 Conclusion

In this paper, we focused on two problems: (i) inferring GC relationships in multivariate time series
under nonlinear dynamics and (ii) inferring signs of GC relationships. We proposed a novel GC
inference framework based on autoregressive modelling with SENNs and demonstrated that, on
simulated data, its performance is promisingly competitive with the related methods. Our framework
performs a stability-based selection of significant relationships, finding a GC structure that is stable on
original and time-reversed data. Additionally, it is more amenable to interpretation, since relationships
between variables can be explored by inspecting generalised coefficients, which, as we showed
empirically, are more informative than input layer weights. In future research, we plan a thorough
investigation of the stability-based thresholding procedure and of time-reversal for inferring GC.
Furthermore, we would like to facilitate a more comprehensive comparison with the baselines on
real-world data sets. Last but not least, we plan to tackle the problem of inferring time-varying GC
structures with the introduced framework.
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Broader Impact

This paper presents a novel framework for inferring nonlinear multivariate Granger causality, and
its contributions are purely conceptual and experimental. The approach described herein does not
have immediate benefits and consequences for the society. The inference framework could be
adopted by practitioners from various domains, where inferring Granger causality is of interest, e.g.
for exploratory analysis of time series data. As for any other Granger-causal inference technique,
inference results need to be interpreted with caution, while keeping in mind fundamental limitations
and assumptions of the framework proposed by C.W.J. Granger. In particular, Granger causality
can yield erroneous conclusions under unobserved confounding, instantaneous interactions, and/or
insufficient sampling rates.
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Supplemental Material: Interpretable Models for Granger
Causality Using Self-explaining Neural Networks

A Linear Vector Autoregression

Linear vector autoregression (VAR) [17] is a time series model conventionally used to test for Granger
causality (see Section 2). VAR assumes linear dynamics:

xt = ν +

K∑
k=1

Ψkxt−k + εt, (5)

where ν ∈ Rp is the intercept vector; Ψk ∈ Rp×p are coefficient matrices; and εt ∼ Np (0,Σε)
are Gaussian innovation terms. Parameter K is the order of the VAR model and determines the
maximum lag at which Granger-causal interactions occur. In VAR, Granger causality is defined by
zero constraints on the coefficients, in particular, xi does not Granger-cause xj if and only if, for all
lags k ∈ {1, 2, ...,K}, (Ψk)j,i = 0. These constraints can be tested by performing, for example,
F -test or Wald test.

Usually a VAR model is fitted using multivariate least squares. In high-dimensional time series,
regularisation can be introduced to avoid inferring spurious associations. Table 2 shows various
sparsity-inducing penalties for a linear VAR model of order K (see Equation 5), described in [23].
Different penalties induce different sparsity patterns in coefficient matrices Ψ1,Ψ2, ...,ΨK . These
penalties can be adapted to the GVAR model as the sparsity-inducing term.

Table 2: Various sparsity-inducing penalty terms, described in [23], for a linear VAR of or-
der K. Herein, Ψ = [Ψ1 Ψ2 ... ΨK ] ∈ Rp×Kp (cf. Equation 5), and Ψk:K =
[Ψk Ψk+1 ... ΨK ]. Different penalties induce different sparsity patterns in coefficient ma-
trices.

Model Structure Penalty
Basic Lasso ‖Ψ‖1
Elastic net α ‖Ψ‖1 + (1− α) ‖Ψ‖22 , α ∈ (0, 1)

Lag group
∑K
k=1 ‖Ψk‖F

Componentwise
∑p
i=1

∑K
k=1

∥∥(Ψk:K)i
∥∥
2

Elementwise
∑p
i=1

∑p
j=1

∑K
k=1

∥∥∥(Ψk:K)i,j

∥∥∥
2

Lag-weighted Lasso
∑K
k=1 k

α ‖Ψk‖1 , α ∈ (0, 1)

B Inferring Granger Causality under Nonlinear Dynamics

Below we provide a more detailed overview of the related work on inferring nonlinear multivariate
Granger causality, focusing on the recent machine learning techniques that tackle this problem.

Kernel-based Methods. Kernel-based GC inference techniques provide a natural extension of the
VAR model, described in Appendix A, to nonlinear dynamics. Marinazzo et al. [18] leverage
reproducing kernel Hilbert spaces to infer linear Granger causality in an appropriate transformed
feature space. Ren et al. [27] introduce a kernel-based GC inference technique that relies on
regularisation – Hilbert–Schmidt independence criterion (HSIC) Lasso GC.

Neural Networks with Non-uniform Embedding. Montalto et al. [21] propose neural networks
with non-uniform embedding (NUE). Significant Granger causes are identified using the NUE, a
feature selection procedure. An MLP is ‘grown’ iteratively by greedily adding lagged predictor
components as inputs. Once stopping conditions are satisfied, a predictor time series is claimed a
significant cause of the target if at least one of its lagged components was added as an input. This
technique is prohibitively costly, especially, in a high-dimensional setting, since it requires training
and comparing many candidate models. Wang et al. [32] extend the NUE by replacing MLPs with
LSTMs.

Neural Granger Causality. Tank et al. [31] propose inferring nonlinear Granger causality using
structured multilayer perceptron and long short-term memory with sparse input layer weights, cMLP
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and cLSTM. To infer GC, p models need to be trained with each variable as a response. cMLP and
cLSTM leverage the group Lasso penalty and proximal gradient descent [24] to infer GC relationships
from trained input layer weights.

Attention-based Convolutional Neural Networks. Nauta et al. [22] introduce the temporal causal
discovery framework (TCDF) that utilises attention-based convolutional neural networks (CNN).
Similarly to cMLP and cLSTM [31], the TCDF requires training p neural network models to
forecast each variable. Key distinctions of the TCDF are (i) the choice of the temporal convolutional
network architecture over MLPs or LSTMs for time series forecasting and (ii) the use of the attention
mechanism to perform attribution. In addition to the GC inference, the TCDF can detect time delays at
which Granger-causal interactions occur. Furthermore, Nauta et al. [22] provide a permutation-based
procedure for evaluating variable importance and identifying significant causal links.

Economy Statistical Recurrent Units. Khanna & Tan [12] propose an approach for inferring
nonlinear Granger causality similar to cMLP and cLSTM [31]. Likewise, they penalise norms of
weights in some layers to induce sparsity. The key difference from the work of Tank et al. [31] is the
use of statistical recurrent units (SRUs) as a predictive model. Khanna & Tan [12] propose a new
sample-efficient architecture – economy-SRU (eSRU).

Minimum Predictive Information Regularisation. Wu et al. [34] adopt an information-theoretic
approach to Granger-causal discovery. They introduce learnable corruption, e.g. additive Gaussian
noise with learnable variances, for predictor variables and minimise a loss function with minimum
predictive information regularisation that encourages the corruption of predictor time series. Similarly
to the approaches described in [31, 22, 12], this framework requires training p models separately.

Amortised Causal Discovery & Neural Relational Inference. Kipf et al. [13] introduce the neural
relational inference (NRI) model based on graph neural networks and variational autoencoders. The
NRI model disentangles the dynamics and the undirected relational structure represented explicitly
as a discrete latent graph variable. This allows pooling time series data with shared dynamics, but
varying relational structures. Löwe et al. [16] provide a natural extension of the NRI model to
the Granger-causal discovery. They introduce a more general framework of the amortised causal
discovery wherein time series replicates have a varying causal structure, but share dynamics. In
contrast to the previous methods [31, 22, 12, 34], which in this setting, have to be retrained separately
for each replicate, the NRI is trained on the pooled dataset, leveraging shared dynamics.

C Self-explaining Neural Networks

Alvarez-Melis & Jaakkola [1] introduce self-explaining neural networks (SENN) – a class of intrinsi-
cally interpretable models motivated by explicitness, faithfulness, and stability properties. A SENN
with a link function g(·) and interpretable basis concepts h(x) : Rp → Rk follows the form

f(x) = g (θ(x)1h(x)1, ..., θ(x)kh(x)k) , (6)
where x ∈ Rp are predictors; and θ(·) is a neural network with k outputs. We refer to θ(x) as
generalised coefficients for data point x and use them to ‘explain’ contributions of individual basis
concepts to predictions. As defined in [1], g(·), θ(·), and h(·) in Equation 6 need to satisfy:

1. g(·) is monotonic and additively separable in its arguments;

2. ∂g
∂zi

> 0 with zi = θ(x)ih(x)i, for all i;

3. θ(·) is locally difference-bounded by h(·), i.e. for every x0, there exist δ > 0 and L ∈ R
s.t. if ‖x− x0‖ < δ, then ‖θ(x)− θ(x0)‖ ≤ L ‖h(x)− h(x0)‖;

4. {h(x)i}ki=1 are interpretable representations of x;
5. k is small.

A SENN is trained by minimising the following gradient-regularised loss function, which balances
performance with interpretability:

Ly(f(x), y) + λLθ (f(x)) , (7)
where Ly(f(x), y) is a loss term for the ground classification or regression task; λ > 0 is a
regularisation parameter; and Lθ(f(x)) =

∥∥∇xf(x)− θ(x)>Jhx (x)∥∥2 is the gradient penalty,
where Jhx is the Jacobian of h(·) w.r.t. x. This penalty encourages f(·) to be locally linear.
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D Ablation Study of the Loss Function

We inspect hyperparameter tuning results for the GVAR model on Lorenz 96 [15] and synthetic
fMRI time series [29] (see Appendix F) as an ablation study for the loss function proposed (see
Equation 3 in Section 3). Figures 2 and 3 show heat maps of BA scores (left) and AUPRCs (right) for
different values of parameters λ and γ for Lorenz 96 and fMRI datasets, respectively. For the Lorenz
96 system, sparsity-inducing regularisation appears to be particularly important, nevertheless, there
is also an increase in BA and AUPRC from a moderate smoothing penalty. For fMRI, we observe
considerable performance gains from introducing both the sparsity-inducing and smoothing penalty
terms. Given the sparsity of the ground truth GC structure and the scarce number of observations
(T = 200), these gains are not unexpected. During preliminary experiments, we ran grid search
across wider ranges of λ and γ values, however, did not observe further improvements from stronger
regularisation. In summary, these results empirically motivate the need for two different forms of
regularisation leveraged by the GVAR loss function: the sparsity-inducing and smoothing penalty
terms.

Figure 2: GVAR hyperparameter grid search results for Lorenz 96 time series (under F = 40) across
5 values of λ ∈ [0.0, 3.0] and γ ∈ [0.0, 0.02]. Each cell shows average balanced accuracy (left)
and AUPRC (right) across 5 replicates (darker colours correspond to lower performance) for one
hyperparameter configuration.

Figure 3: GVAR hyperparameter grid search results for simulated fMRI time series across 5 values
of λ ∈ [0.0, 3.0] and γ ∈ [0.0, 0.1]. The heat map on the left shows average BA scores, and the heat
map on the right – average AUPRCs.
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E Stability-based Thresholding

The literature on stability-based model selection is abundant [5, 14, 20, 30]. For example, Ben-Hur et
al. [5] propose measuring stability of clustering solutions under perturbations to assess structure in
the data and select an appropriate number of clusters. Lange et al. [14] propose a somewhat similar
approach. Meinshausen & Bühlmann [20] introduce the stability selection procedure applicable
to a wide range of high-dimensional problems: their method guides the choice of the amount of
regularisation based on the error rate control. Sun et al. [30] investigate a similar procedure in the
context of tuning penalised regression models.

Algorithm 1 provides pseudo-code for the stability-based selection of significant GC relationships
described in Section 3.1. This procedure finds a threshold which results in a dependency structure
that is stable on original and time-reversed time series [33].

Algorithm 1: Stability-based thresholding.

Input: One replicate of multivariate time series {xt}Tt=1; regularisation parameters λ and γ ≥ 0; model
order K ≥ 1; sequence α = (α1, ..., αQ), 0 ≤ α1 < α2 < ... < αQ ≤ 1.

Output :Estimate Â of the adjacency matrix of the GC summary graph.
1 Let {x̃t}Tt=1 be the time-reversed version of {xt}Tt=1, i.e. {x̃1, ..., x̃T } ≡ {xT , ...,x1} .
2 Let τ (X, α) be the elementwise thresholding operator. For each component ofX , τ (Xi,j , α) = 1, if
|Xi,j | ≥ α, and τ (Xi,j , α) = 0, otherwise.

3 Train an order K GVAR with parameters λ and γ by minimising loss in Equation 3 (see Section 3) on
{xt}Tt=1 and compute S as in Equation 4 (see Section 3).

4 Train another GVAR on {x̃t}Tt=1 and compute S̃ as in Equation 4 (see Section 3).
5 for i = 1 to Q do
6 Let κi = qαi(S) and κ̃i = qαi(S̃), where qα(X) denotes the α-quantile of X .

7 Evaluate agreement ςi = 1
2

[
BA
(
τ (S, κi) , τ

(
S̃>, κ̃i

))
+ BA

(
τ
(
S̃>, κ̃i

)
, τ (S, κi)

)]
,

where BA(·, ·) denotes the balanced accuracy score.
8 end
9 Let i∗ = argmax1≤i≤Q ςi and α∗ = αi∗ .

10 Let Â = τ (S, qα∗(S)).
11 return Â.

Figure 4 shows an example of agreement between dependency structures inferred on original and
time-reversed synthetic sequences across a range of thresholds (see Algorithm 1). In addition, we
plot the BA score for resulting thresholded matrices evaluated against the true adjacency matrix. As
can be seen, the peak of stability agrees with the highest BA achieved. In both cases, the procedure
described by Algorithm 1 chooses the optimal threshold αi, which results in the highest agreement
with the true dependency structure (unknown at the time of inference).

(a) Lorenz 96, F = 10. (b) Multi-species Lotka–Volterra.

Figure 4: Agreement (N) between GC structures inferred on the original and time-reversed data
across a range of thresholds for one simulation of the Lorenz 96 (a) and multi-species Lotka–Volterra
(b) systems. BA score (×) is evaluated against the ground truth adjacency matrix.
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F Datasets

Herein, we provide a brief summary of synthetic datasets used in our experiments (see Section 4).

Lorenz 96 Model. Lorenz 96 [15] is a standard benchmark for the evaluation of GC inference
techniques [31, 12]. This continuous time dynamical system in p variables is given by the following
nonlinear differential equations:

dxi

dt
=
(
xi+1 − xi−2

)
xi−1 − xi + F, for 1 ≤ i ≤ p, (8)

where x0 := xp, x−1 := xp−1, and xp+1 := x1; and F is a forcing constant that, in combination
with p, controls the nonlinearity of the system [31, 11]. As can be seen from Equation 8, the true
causal structure is quite sparse (the adjacency matrix of the summary graph for this and other datasets
is visualised in Figure 5). For our experiments, we numerically simulated R = 5 replicates with
p = 20 variables and T = 500 observations under F = 10. We also experimented with F = 40 and
observed similar results (see Appendix H).

fMRI. Another dataset we considered consists of rich and realistic simulations of blood-oxygen-
level-dependent (BOLD) time series [29] that were generated using the dynamic causal modelling
functional magnetic resonance imaging (fMRI) forward model1. In these time series, variables
represent ‘activity’ in different spatial regions of interest within the brain. We consider R = 5
replicates from the simulation no. 3 of the original dataset. These time series contain p = 15 variables
and only T = 200 observations. The ground truth causal structure is very sparse (see Figure 5).

Lotka–Volterra Model. We consider the Lotka–Volterra model with multiple species
(
Bacaër

[4] provides a definition of the original two-species system
)
, given by the following differential

equations:

dxi

dt
= αxi − βxi

∑
j∈Pa(xi)

yj − η
(
xi
)2
, for 1 ≤ i ≤ p, (9)

dyj

dt
= δyj

∑
k∈Pa(yj)

xk − ρyj , for 1 ≤ j ≤ p, (10)

where xi correspond to population sizes of prey species; yj denote population sizes of predator
species2; α, β, η, δ, ρ > 0 are fixed parameters controlling strengths of interactions; and Pa(xi),
Pa(yj) are sets of Granger-causes of xi and yj , respectively. According to Equations 9 and 10, the
population size of each prey species xi is driven down by

∣∣Pa(xi)∣∣ predator species (negative effects),
whereas each predator species yj is driven up by

∣∣Pa(yj)
∣∣ prey populations (positive effects).

For experiments, we simulated the system under α = ρ = 1.1, β = δ = 0.2, η = 2.75 × 10−5,∣∣Pa(xi)
∣∣ = ∣∣Pa(yj)

∣∣ = 2, p = 10, i.e. 2p = 20 variables in total, with T = 2000 observations.
Figure 6 depicts signs of GC effects between variables in a multi-species Lotka–Volterra with 2p = 20
species and 2 parents per variable. Numerical simulations use the Runge-Kutta method3. We make a
few adjustments to the state transition equations, in particular: we introduce normally-distributed
innovation terms to make simulated data noisy; during state transitions, we clip all population sizes
below 0.

1The data are available at https://www.fmrib.ox.ac.uk/datasets/netsim/.
2In our simulations, we restricted population sizes xi and yj to be non-negative.
3Simulations are based on the implementation available at https://github.com/smkalami/

lotka-volterra-in-python.
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(a) Lorenz 96. (b) fMRI.

(c) Multi-species Lotka–Volterra.

Figure 5: Adjacency matrices of Granger-causal summary graphs for Lorenz 96, simulated fMRI, and
multi-species Lotka–Volterra time series. Dark cells correspond to the absence of a GC relationship,
i.e. Ai,j = 0; light cells denote a GC relationship, i.e. Ai,j = 1.

Figure 6: Signs of GC relationships between variables in the Lotka–Volterra system given by
Equations 9 and 10, with p = 10. First ten columns correspond to prey species, whereas the
last ten correspond to predators. Each prey species is ‘hunted’ by two predator species, and each
predator species ‘hunts’ two prey species. Similarly to the other experiments, we ignore self-causal
relationships.
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G Hyperparameter Tuning

In our experiments (see Section 4), for all of the inference techniques compared, we searched across
a grid of hyperparameters that control the sparsity of inferred GC structures. Other hyperparameters
were fine-tuned manually. Final results reported in the paper correspond to the best hyperparameter
configurations. With this testing setup, our goal was to fairly compare best achievable inferential
performance of the techniques.

Tables 3, 4, and 5 provide ranges for hyperparameter values considered in each experiment. For cMLP
and cLSTM [31], parameter λ is the weight of the group Lasso penalty; for TCDF [22], significance
parameter α is used to decide which potential GC relationships are significant; eSRU [12] has three
different penalties weighted by λ1:3. For the stability-based thresholding (see Algorithm 1) in GVAR,
we used 20 equally spaced values in [0, 1] as sequence α4. For Lorenz 96 and fMRI experiments,
grid search results are plotted in Figures 2, 7, and 3. Figure 8 contains GVAR grid search results for
the Lotka–Volterra experiment.

Table 3: Hyperparameter values for Lorenz 96 datasets with F = 10 and 40. Herein, K denotes
model order (maximum lag). If a hyperparameter is not applicable to a model, the corresponding
entry is marked by ‘NA’.

Model K
# hidden

layers
# hidden

units
# training

epochs
Learning

rate
Mini-batch

size
Sparsity

hyperparam-s
VAR 5 NA NA NA NA NA NA

cMLP 5 2 50 1,000 1.0e-2 NA

F = 10:
λ ∈ [0.5, 2.0];
F = 40:
λ ∈ [0.0, 1.0]

cLSTM NA 2 50 1,000 5.0e-3 NA

F = 10:
λ ∈ [0.1, 0.6];
F = 40:
λ ∈ [0.2, 0.25]

TCDF 5 2 50 1,000 1.0e-2 256 F = 10, 40:
α ∈ [0.0, 2.5]

eSRU NA 2 10 2,000 5.0e-3 256 F = 10, 40:
λ1:3 ∈ [0.01, 0.1]

GVAR 5 2 50 1,000 1.0e-4 256
F = 10, 40:
λ ∈ [0.0, 3.0],
γ ∈ [0.0, 0.025]

Figure 7: GVAR hyperparameter grid search results for Lorenz 96 time series, under F = 10, across
5 values of λ ∈ [0.0, 3.0] and γ ∈ [0.0, 0.02]. Each cell shows average balanced accuracy (left) and
AUPRC (right) across 5 replicates.

4We did not observe high sensitivity of performance w.r.t. α, as long as sufficiently many evenly spaced
sparsity levels are considered.
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Table 4: Hyperparameter values for simulated fMRI time series.

Model K
# hidden

layers
# hidden

units
# training

epochs
Learning

rate
Mini-batch

size
Sparsity

hyperparam-s
VAR 1 NA NA NA NA NA NA
cMLP 1 1 50 2,000 1.0e-2 NA λ ∈ [0.001, 0.75]
cLSTM NA 1 50 1,000 1.0e-2 NA λ ∈ [0.05, 0.3]
TCDF 1 1 50 2,000 1.0e-3 256 α ∈ [0.0, 2.0]

eSRU NA 2 10 2,000 1.0e-3 256
λ1 ∈ [0.01, 0.05],
λ2 ∈ [0.01, 0.05],
λ3 ∈ [0.01, 1.0]

GVAR 1 1 50 1,000 1.0e-4 256 λ ∈ [0.0, 3.0],
γ ∈ [0.0, 0.1]

Table 5: Hyperparameter values for multi-species Lotka–Volterra time series.

Model K
# hidden

layers
# hidden

units
# training

epochs
Learning

rate
Mini-batch

size
Sparsity

hyperparam-s
VAR 1 NA NA NA NA NA NA
cMLP 1 2 50 2,000 5.0e-3 NA λ ∈ [0.2, 0.4]
cLSTM NA 2 50 1,000 5.0e-3 NA λ ∈ [0.0, 1.0]
TCDF 1 2 50 2,000 1.0e-2 64 α ∈ [0.0, 2.0]

eSRU NA 2 10 2,000 1.0e-3 256
λ1 ∈ [0.01, 0.05],
λ2 ∈ [0.01, 0.05],
λ3 ∈ [0.01, 1.0]

GVAR 1 2 50 500 1.0e-4 256 λ ∈ [0.0, 1.0],
γ ∈ [0.0, 0.01]

(a) BA (b) AUPRC

(c) BApos (d) BAneg

Figure 8: GVAR hyperparameter grid search results for multi-species Lotka–Volterra time series
across 5 values of λ ∈ [0.0, 1.0] and γ ∈ [0.0, 0.01]. Heat maps above show balanced accuracies (a),
AUPRCs (b), and balanced accuracies for positive (c) and negative (d) effects.
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H Additional Experiments

Inferring Granger Causality: Lorenz 96, F = 40. In addition to the results on the Lorenz 96
system under F = 10 (see Section 4), we compared the methods under F = 40. This forcing constant
value (in combination with p = 20) results in a higher degree of nonlinearity. In this scenario, our
model oce again performs competetively with the baselines (see Table 6).

Table 6: Performance comparison on the Lorenz 96 model with F = 40 .

Model BA(±SD) AUPRC(±SD)
VAR 0.59(±0.03) 0.47(±0.04)
cMLP 0.81(±0.02) 0.96(±0.03)
cLSTM 0.66(±0.04) 0.39(±0.06)
TCDF 0.60(±0.03) 0.31(±0.05)
eSRU 0.89(±0.02) 0.83(±0.03)
GVAR 0.89(±0.05) 0.92(±0.02)

Effect Sign Detection in a Linear VAR. Herein we provide results for the evaluation of GVAR and
our inference framework on a very simple synthetic time series dataset. We simulate time series with
p = 4 variables and linear interaction dynamics given by the following equations:

xt = a1xt−1 + εx
t ,

wt = a2wt−1 + a3xt−1 + εw
t ,

yt = a4yt−1 + a5wt−1 + εyt ,

zt = a6zt−1 + a7wt−1 + a8yt−1 + εz
t,

(11)

where coefficients ai ∼ U ([−0.8,−0.2] ∪ [0.2, 0.8]) are sampled independently in each simulation;
and ε·t ∼ N (0, 0.16) are additive innovation terms. This is an adapted version of one of artificial
datasets described in [25], but without instantaneous effects.

The GC summary graph of the system is visualised in Figure 9. It is considerably denser
than for the Lorenz 96, fMRI, and Lotka–Volterra time series investigated in Section 4.

Figure 9: The adjacency
matrix of the GC summary
graph for the model given by
Equation 11.

Similarly to the experiment described in Section 4.2, we infer GC
relationships with the proposed framework and evaluate inference
results against the true dependency structure and effect signs. Table
7 contains average performance across 10 simulations achieved by
GVAR with hyperparameter values K = 1, λ = 0.2, and γ = 0.5. In
addition, we provide results for some of the baselines (no systematic
hyperparameter tuning was performed for this experiment).

GVAR attains perfect AUROC and AUPRC in all 10 simulations. In
some cases, stability-based thresholding fails to recover a completely
correct GC structure, nevertheless, average accuracy and balanced
accuracy scores are satisfactory. Signs of inferred generalised coef-
ficients mostly agree with the ground truth effect signs, as given by
coefficients a1:8 in Equation 11. Figure 10 shows generalised coef-
ficients plotted against time. As expected, coefficients almost do not
vary, since parameter γ is set to a large value.

Not surprisingly, linear VAR performs the best on this dataset w.r.t. all evaluation metrics. Both cMLP
and eSRU successfully infer GC relationships, achieving results comparable to GVAR. However,
neither infers effect signs as well as GVAR. Thus, similarly to the experiment in Section 4.2, we
conclude that generalised coefficients are more interpretable than neural network weights leveraged
by cMLP, TCDF, and eSRU.

To summarise, this simple experiment serves as a sanity check and shows that our GC inference
framework performs reasonably in low-dimensional time series with linear dynamics and a relatively
dense GC summary graph (cf. Figure 5). Generally, the method successfully infers both the
dependency structure and interaction signs.
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Table 7: Performance on synthetic time series with linear dynamics, given by Equation 11. Averages
and standard deviations are evaluated across 10 independent simulations. eSRU failed to shrink
weights to exact 0s, therefore, we omit accuracy and BA scores for it.

VAR cMLP TCDF eSRU GVAR
ACC 0.98(±0.04) 0.87(±0.09) 0.79(±0.06) NA 0.95(±0.07)
BA 0.98(±0.03) 0.90(±0.06) 0.69(±0.17) NA 0.94(±0.08)
AUROC 1.00(±0.00) 1.00(±0.00) 0.87(±0.11) 0.97(±0.04) 1.00(±0.00)
AUPRC 1.00(±0.00) 1.00(±0.00) 0.81(±0.13) 0.97(±0.05) 1.00(±0.00)
BApos 1.00(±0.01) 0.76(±0.21) 0.57(±0.24) 0.61(±0.17) 0.92(±0.16)
BAneg 0.99(±0.02) 0.75(±0.23) 0.55(±0.17) 0.62(±0.22) 0.93(±0.15)

Figure 10: Variability of GVAR generalised coefficients throughout time for one simulation of the
time series with linear dynamics (see Equation 11). Observe that signs of generalised coefficients
agree with signs of coefficients ai. Generalised coefficients for Granger non-causal relationships are
significantly lower in magnitude. As expected, coefficients vary little w.r.t. time, since parameter γ is
chosen to be very large.
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