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Abstract

Object-centric world models learn useful representations for planning and control
but have so far only been applied to synthetic and deterministic environments. We
introduce a perceptual-grouping-based world model for the dual task of extract-
ing object-centric representations and modeling stochastic dynamics in visually
complex and noisy video environments. The world model is built upon a novel
latent state space model that learns the variance for object discovery and dynamics
separately. This design is motivated by the disparity in available information that
exists between the discovery component, which takes a provided video frame and
decomposes it into objects, and the dynamics component, which predicts repre-
sentations for future video frames conditioned only on past frames. To learn the
dynamics variance, we introduce a best-of-many-rollouts objective. We show that
the world model successfully learns accurate and diverse rollouts in a real-world
robotic manipulation environment with noisy actions while learning interpretable
object-centric representations.

1 Introduction

Object-centric world models aim to learn structured representations of environments that can be
re-used to solve a variety of downstream tasks. For example, various studies have shown that object-
centric representations can improve sample efficiency and generalization of visual model-based
reinforcement learning agents [39; 22; 37; 19; 21; 3; 35; 8; 1]. However, the environments have
largely been synthetic and deterministic. Extending these world models for real-world environments
is therefore a promising line of investigation.

The goal of this work is to integrate unsupervised object discovery [13; 14; 15; 12; 5; 11] into a
latent state space model (SSM) for realistic video environments. These environments have multiple
rigid and non-rigid objects undergoing stochastic motion, occlusion, and variability in scale and
illumination. To handle this visual complexity we adopt perceptual grouping (i.e., segmentation) for
object discovery following a recent line of work [14; 34; 5; 11; 15; 35; 25]. These models represent
images as a symmetric mixture of object-centric image components. A subset of these are fully
symmetric latent variable generative models, in that any permutation applied to the order of the latent
object representations (i.e., object slots) similarly permutes the output of the inference and generation
networks. The fully symmetric inductive bias is known to be important when learning dynamics so
that a single model of the environment physics can be shared by all object representations [4; 35].

In this work, we address the problem of jointly learning perceptual-grouping-based object discovery
and stochastic dynamics, which we illustrate with the following example. Suppose that we have
a sample from an object discovery distribution over slots, which corresponds to a segmentation of
an image ot of a block undergoing stochastic motion. Assume the block’s pixels were assigned to
a single slot and the discovery posterior distribution placed low variance on its inferred attributes
since it fully observed ot. However, the dynamics model, which only has access to observations
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up to but not including time t, predicts high variance for the block’s spatiotemporal attributes. We
found that a SSM can respect this distinction between discovery and dynamics by learning their
variances with separate objectives. Our key contributions are: (1) a world model with a novel SSM
that separates learning the variance for unsupervised object discovery and stochastic dynamics, (2) a
novel best-of-many-rollouts objective for training the dynamics variance and (3) experiments on a
real-world robotic manipulation benchmark that outperforms the most relevant prior work [35].

2 Related Work

The most closely related world model is OP3 [35], which extends IODINE [15]—a fully symmetric
object-centric generative model for images—to support videos by combining it with the RSSM [16], a
joint deterministic and stochastic SSM. While OP3 claims to learn stochastic dynamics, we found that
in practice it fails to do so. This is because OP3 uses a single shared dynamics model both as a prior
for object discovery and for rolling out future frames, ignoring the discrepancy between discovery
and stochastic dynamics we described in Section 1. As a result, the dynamics model struggles to learn
spatiotemporal stochasticity and [35] reports convergence issues, which the deterministic path in the
RSSM helps to address. This determinism manifests as blurry rollouts in stochastic environments.

While stochastic video prediction [2; 9; 23; 26] may appear similar to the considered problem, it
is less challenging since those models only try to learn a single entangled scene representation.
Moreover, those representations are known to be less effective for multi-object downstream tasks
such as robotic manipulation [35].

3 Method

The SSM for the proposed object-centric world model, depicted in Figure 1b, receives high-
dimensional observations ot at discrete time steps 0 ≤ t < T of theK object slots st := s1:Kt ∈ RM .1
It receives actions at ∈ RN (e.g., a pick-and-place instruction) at each step. The generative process
for a video clip of length H conditioned on T previous frames is:

p(oT≤t≤H , s≤T+H | o<T , a≤T+H−1) (1)

= pO(s0 | o0)
T−1∏
t=1

pO(st | ot, st−1, at−1)
T+H∏
t=T

p(ot | st)pD(st | st−1, at−1).

The state space model consists of object discovery posteriors pO(s0 | o0) and pO(st | ot, st−1, at−1),
an observation model p(ot | st), and a latent dynamics model for future rollouts pD(st | st−1, at−1).
The object discovery prior pO(st | st−1, at−1) is not shown in Eq. 1 since it is just used to initialize the
discovery posterior parameters during iterative inference. Each distribution is defined symmetrically
over the K object slots. We use a Gaussian mixture model with fixed global variance to render
images: p(ot | st) =

∑K
k=1 π

k
t N (µk

t , σ
2) where an object-centric decoder [38] maps st to (πt,µt).

Following standard practice for variational inference [18; 31], we approximate the intractable object
discovery posterior distribution with qO(s≤T−1 | o≤T−1, s≤T−2, a≤T−2).

Object discovery prior We define pO(st | st−1, at−1) to be a symmetric product of K Gaus-
sians. The K means µt,O for this distribution are output by an object-centric interaction network
f(st−1, at−1) (see [34; 35]). In line with our argument that the discovery distributions do not model
spatiotemporal stochasticity, we do not use past information to predict the K variances. Instead, we
learn the variance σ2

O as a static model parameter shared across time steps t < T and K slots.

Object discovery posterior Like the discovery prior, the discovery posterior is a symmetric product
of K Gaussians. Instead of using iterative amortized inference [28; 15] we adopt its sequential
extension, amortized variational filtering EM inference [27]. At each step 0 ≤ t < T we make an
initial guess λ(1)

t for the parameters of the variational posterior which a refinement network [15]
iteratively updates I times. Randomly sampling from the initial posterior guess during step i = 1
breaks the symmetry amongst the slots and establishes the object-slot assignment. The refinement

1We use boldface to indicate random variables that are repeated K times and s≤T := s0:T .
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Figure 1: (a) The variance for each latent unit for K = 6 64-dim slots at steps t = 1, 2 of a video.
The dynamics model pD (bottom) learns to only predict high variance (white) for latent attributes
that may change over time. The object discovery posterior variance (top) is uniform and has low
magnitude across latent units and slots. We are able to successfully fit dynamics variance (e.g., caused
by action noise) by learning the discovery and dynamics variances separately by design. (b) The
object-centric state space model for two provided frames and two rollout steps. The object discovery
prior links s0 to s1 and the dynamics model is shown with snake arrows. Circles represent stochastic
variables. Solid lines denote the generative process and dashed lines the inference model.

network takes in several inputs, the most important being Lt,o.d. (o.d. := object discovery), an estimate
of the quality of the current posterior parameters at step i of inference:

L(i)
t,o.d. = −Es

(i)
t ∼N (λ

(i)
t )

[log p(ot | s(i)t )] +DKL

(
N (λ

(i)
t ) ‖ pO(st | st−1, at−1)

)
. (2)

Note that OP3 puts the dynamics prior in the KL term of Eq. 2 whereas we use the discovery prior.
The initial guesses for the posterior are λ

(1)
0 = {µ0,σ

2
O} where µ0 is learned as a model parameter

and λ
(1)
t = {µt,O,σ

2
O}, the discovery prior parameters. The discovery prior means µt,O help

encourage the discovery posterior to maintain the object-slot assignment from the previous time
step [35]. Although this introduces an implicit dependence on past information for the posterior
mean, we find that the posterior variance is still chiefly influenced by ot during inference, while the
dynamics variance depends entirely on the past (Figure 1a).

Dynamics model The latent dynamics model pD(st | st−1, at−1) is likewise a product of K
Gaussians. We use the same spatiotemporal interaction network from the discovery prior to compute
the K means of the dynamics distribution, sharing the parameters. We then extend the interaction
network to also output K variances σ2

t,D so that the dynamics distribution is parameterized as
{µt,O,σ

2
t,D}. We found that sharing the parameters for the means improves sample efficiency and

rollout sharpness. The KL term in Eq. 2 helps improve the visual quality of rollouts by pushing the
means of the dynamics distribution to match the discovery posterior.

3.1 Training

The dynamics variances do not show up in the KL term in Eq. 2, so we need to devise an additional
loss term for them. While a simple approach to fit the dynamics variances could be to rollout
the dynamics model for H steps and compute reconstruction losses, we observe that in stochastic
environments minimizing average reconstruction error collapses the dynamics variance resulting in
blurry rollouts. We can prevent the dynamics variance from collapsing with a best-of-many-rollouts
(BMR) objective over H future steps:

LBMR =

T−1∑
t=0

( I∑
i=1

i

I
L(i)
t,o.d.

)
−max

j

{T+H∑
t=T

E[log p(ot | s(j)t )]
}J

j=1
, (3)

with s
(j)
t sampled from the object discovery posterior for t < T and s

(j)
t sampled from the dynamics

model for t ≥ T . The max over J encourages fitting the dynamics variance so as to increase the
chance of drawing a sample that achieves the best possible reconstruction loss. We approximate the
objective by having each of the J future rollouts share a single sample through steps t < T to speed
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Figure 2: (a-b) Ours is less blurry and achieves a cleaner decomposition while action noise causes the
visual quality of OP3’s predictions to degrade. We only show 4 / 6 slots to conserve space. (c) Ours
can predict multiple physically plausible robot arm configurations. Best viewed in color.

Table 1: BAIR (Realism / Diversity / Accuracy)

Model FVD (↓) (Best - Worst)100
SSIM (↑) SSIM / PSNR (↑)

VRNN† 472.5 ± 15.2 0.089 0.72 / 19.72

OP3 642.3 ± 27.2 0.002 0.76 / 21.61
Ours 564.8 ± 24.3 0.053 0.79 / 22.39
† No object discovery

up training. We note that the objective proposed in [29] evaluates a max over samples after each step,
which only fits the distribution over a single step while we take the max over entire rollouts. The i/I
term down-weights the importance of early steps of iterative inference [15].

4 Experiments
We evaluate on the BAIR towel_pick_30k [10; 35; 36] stochastic video prediction benchmark with
added N (0, 0.052) action noise and condition on two frames and rollout eight future frames. The
main baseline is OP3 [35], the state-of-the-art object-centric world model for realistic videos. Both
models use K = 6 slots and we use J = 5 rollouts for the BMR objective (see appendix for full
details and extra qualitative examples). Following similar studies [20; 21] we also use a conditional
VRNN [6] as a baseline with comparable capacity to the considered models—but it does not do
object discovery. In Table 1, we compare the ability to fit spatiotemporal stochasticity by computing
the median per-frame SSIM and PSNR of the best out of 100 future rollouts averaged over time steps
(accuracy) [2; 23; 36], the difference between best and worst SSIM out of 100 rollouts (diversity),
and the Fréchet Video Distance (FVD) [33] averaged over five populations with sample size 256
(realism). Ours outperforms OP3 in all metrics—notice that OP3’s rollouts are all virtually identical
(diversity = 0.002). Our model does not suffer from training instabilities, unlike OP3 [35]. We
compare object decomposition quality by visualizing the object slots (Figure 2) instead of computing
ARI scores since ground truth masks are unavailable.

5 Discussion
We have introduced a perceptual-grouping-based world model that uses a latent dynamics model
for stochastic rollouts. In a more complete version of this work we will add model ablations, more
environments, and comparisons to other relevant object-centric world models (e.g., G-SWM [24]). In
future work we will consider more sophisticated dynamics models to handle multi-modal prediction.
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Table 2: State space model details
Distribution Time steps Implementation

Object discovery prior 0 < t < T pO(st | st−1, at−1) := {µt,O,σ
2
O}

Object discovery posterior t < T qO(st | ot, st−1, at−1) :=
∏

k qO(s
k
t | ot, st−1, at−1)

Object discovery posterior guess t = 0 λ
(1)
0 := {µ0,σ

2
O}

Object discovery posterior guess 0 < t < T λ
(1)
t := {µt,O,σ

2
O}

Observation model t ≤ T +H p(ot | st) :=
∑

k π
k
tN (µk

t , σ
2)

Dynamics model t ≥ T pD(st | st−1, at−1) := {µt,O,σ
2
t,D}

A Implementation details

The proposed state space model is summarized in Table 2 as a reference. In the remainder of this
section, we present implementation details and highlight the differences (if any) from prior works.
We refer the reader to the appendix of [35] for OP3’s implementation details.

All models use the ELU activation function [7] and convolutional layers use a stride equal to 1 and
padding equal to 2 unless otherwise noted. We use |skt | = 64.

Refinement network The output of the refinement network is δ
(i)
t which is used to make an

additive update to λ
(i)
t .

Refinement Network
Type Size/Ch. Act. Func. Comment

64× 64 inputs 13
Conv 3× 3 32 ELU
Conv 3× 3 32 ELU
Conv 3× 3 32 ELU
Avg. Pool 2d 4× 4
MLP 8192→ 128 ELU Flattened input
[λ

(i)
t ,∇λt

L] 128 Concat
MLP 384→ 128 ELU
LSTM 128→ 128 Tanh
MLP 128→ 128 None δ

(i)
t

We use the following inputs to the refinement network, where LN means Layernorm and SG means
stop gradients (the LN and SG is to help stabilize training [15]).

Convolutional Inputs
Description Formula LN SG Ch.

image xt 3
means µt 3
mask πt 1
gradient of means ∇µt

L X X 3
gradient of mask ∇πt

L X X 1
coordinate channels 2

total: 13

Vector Inputs
Description Formula LN SG

posterior λ
(i)
t

gradient of posterior ∇λt
L X X

7



The posterior parameters λ(i)
t and their gradients are flat vectors, and we concatenate them to the

output of the convolutional part of the refinement network, then project the result to match the input
dimension of the refinement LSTM with an MLP. Note that in this work, we do not use the mask
logits, mask posterior, gradient of mask posterior, or the pixelwise-likelihood from [15] as auxiliary
inputs. Based on the ablation studies conducted in [15], these have little impact on performance and
unnecessarily increase the number of parameters in the refinement network.

Spatial Broadcast Decoder
Type Size/Ch. Act. Func. Comment

Input: st 64
Broadcast 64+2 + coordinates
Conv 5× 5 32 ELU
Conv 5× 5 32 ELU
Conv 5× 5 32 ELU
Conv 5× 5 32 ELU
Conv 5× 5 4 None RGB + Mask

Interaction network The implementation of the action-conditional interaction network differs
from OP3’s [35] since we do not split the hidden state into stochastic and deterministic components.
Moreover, we use a 128-dim GRU to embed the history {sk0 , . . . , skt−2, skt−1} to help retain informa-
tion over multiple stochastic transitions [16]. In future work, we will include an ablation study to
demonstrate its impact.

Concretely, we have:

s̃k≤t−1 = fo(s
k
≤t−1) s̃kt−1 = GRU(s̃k≤t−1) ãt−1 = fa(at−1) s̃kt−1,act = fao(s̃

k
t−1, ãt−1)

skt−1,interact =

K∑
i 6=k

foo(s̃
i
t−1,act, s̃

k
t−1,act) ŝkt−1 = fcomb(s̃

k
t−1,act, s

k
t−1,interact),

where fao(·, ·) := fact-att · fact-eff computes how and to what extent the action effects a particular
object. Likewise, foo(·, ·) := fobj-att · fobj-eff computes how and to what extent each object effects the
others. All functions are parameterized by single layer MLPs.

Interaction Network

Function Output Act. Func. MLP Size

fo(s
k
≤t−1) s̃k≤t−1 ELU 128

GRU(s̃k≤t−1) s̃kt−1 Tanh 128
fa(at) ãt−1 ELU 32
fact-eff(s̃

k
t−1, ãt−1) s̃kt−1,eff ELU 128

fact-att(s̃
k
t−1,eff) Sigmoid 128

fobj-eff(s̃
i
t−1,act, s̃

j
t−1,act) s̃it−1,eff ELU 256

fobj-att(s̃
i
t−1,eff) Sigmoid 256

fcomb(s̃
k
t−1,act, s

k
t−1,interact) ELU 256

MLP µobj
t None 64

MLP σ2
t,D None 64

A.1 VRNN Baseline

We implement the VRNN [6] so that it has similar model capacity. The resultant sequential VAE
resembles the SVG-LP model [9]. The convolutional image encoder ϕx is based on the component
encoder from GENESIS [11]:

8



Component Encoder
Type Size/Ch. Act. Func. Comment

Input: xt 3
Conv 5× 5 32 ELU stride 1
Conv 5× 5 32 ELU stride 2
Conv 5× 5 64 ELU stride 1
Conv 5× 5 64 ELU stride 2
Conv 5× 5 64 ELU stride 1
MLP 16384→ 256 ELU

The decoder ϕdec is the same spatial broadcast decoder described above. The image likelihood is a
Gaussian with standard deviation fixed at 0.3, and the latent variable encoder ϕz , the encoder ϕenc,
and the prior network ϕprior are 2-layer MLPs. We use an LSTM for the deterministic recurrent
backbone. Actions are concatenated to the inputs for ϕz and ϕprior. All networks except ϕx use
256 hidden nodes and ELU nonlinearities. We chose the architecture hyperparameters based on the
VRNN baseline from SQAIR [20].

B Training details

B.1 GECO

We adaptively balance the reconstruction and KL terms with GECO [30], which reformulates the
objective as a minimization of KL terms subject to a constraint on the reconstruction error. The full
objective is modified for GECO [30] as:

Lfull =

T∑
t=1

( I∑
i=1

i

I
DKL

(
N (λ

(i)
t ) ‖ p(st | st−1, at−1)

)
− ζ
(
C + E

s
(i)
t ∼N (λ

(i)
t )

[log p(ot | s(i)t )]
))

−max
j

( T+d∑
t=T+1

ζ(C + E[log p(ot | s(j)t )])
}J

j=1

)
,

where ζ is a Lagrange parameter that penalizes the model when the reconstruction error is higher
than a manually-specified threshold C. We use an exponential moving average CEMA with parameter
α = 0.99 to keep track of the difference between the reconstruction error of the mini-batch and
C [30]. The Lagrange parameter is updated at every step with ζ ′ = ζ − 1e-6 CEMA. For numerical
stability, we use softplus(ζ) when computing the GECO update and constrain ζ ≥ 0.55 so that
softplus(ζ) is always greater than or equal to 1.

B.2 Hyperparameters

All models are trained with the ADAM optimizer [17] with β1 = 0.9, β2 = 0.999, no weight decay,
and a learning rate of 3e-4. We use gradient clipping where if the norm of the global gradient exceeds
5.0, the gradient is scaled down to that norm [15].

The standard deviation used by the Gaussian mixture model image likelihood is set asymmetrically
following MONet [5] and GENESIS [11]. We observed that this encouraged the model to only use
a single object slot for the background. We set σ1 for the first object slot to 0.09 and σ2:K to 0.11.
Note that the model is still fully object equivariant, and therefore the background is not guaranteed to
be assigned to the first object slot at time step 0.

To choose the GECO reconstruction threshold C we first conducted a single training run with a guess
for C, then adjusted the guess so that the model achieves and maintains reasonable reconstruction
quality. All models use the same C.

We use a curriculum where models are first trained to rollout one step conditioned on two frames for
200K train steps, then are trained to rollout three, five, and then eight steps for 50K train steps each.
We use a mini-batch size of 16 for the first curriculum stage then 10 for the remaining stages. We set
C = −25500 for the first stage and increase it to −26000 afterwards. Note that during the last 25K
train steps we increase the number of sampled rollouts from J = 5 to J = 10, which helps address
multi-modality.
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Figure 3: The VRNN’s prior struggles to maintain the shape and color of the clothing items for the
duration of the rollout and has difficulty with learning the robot arm dynamics. However, it is able
to produce the most realistic rollouts (lowest FVD) by virtue of training with the standard CVAE
objective [32]. While OP3 is able to handle clothing items better than the VRNN, the robot arm blurs
out due to OP3’s inability to handle stochastic dynamics. Ours successfully learns the noisy robot
arm dynamics and maintains the appearance of the static clothing items over many time steps.

C Additional results

We show a side-by-side comparison of rollouts from the VRNN baseline, OP3, and our model in
Figure 3. Figure 4 depicts additional temporal object slot decompositions and Figure 5 shows more
examples of multi-future rollouts given a single set of context frames. The VRNN is able to produce
rollouts which are more realistic yet less accurate than the proposal model (Figure 3,Table 1). We can
attribute the lower realism to a shortcoming of the BMR objective; by only relying on reconstruction
losses for fitting the distribution over future rollouts, the realism of the generation quality will be
inferior to the VRNN which uses the standard CVAE objective [32]. The low accuracy of the VRNN
can be attributed to difficulty with maintaining the color and shape of the cloth items over time and
with predicting arm motion given the provided noisy action. Since our model and OP3 do not have
the same problems, we believe this can be explained by the VRNN’s use of a single entangled scene
representation.
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Figure 4: The white and multi-colored clothing items, as well as the robot arm and background,
are each assigned to a unique slot. Two cloth items (the red and blue ones) are assigned to a single
slot; explicitly enforcing that only one object is assigned to a slot is one potential direction for
improvement. Ours maintains the object-slot assignment over time in addition to capturing the
spatiotemporal uncertainty of the robot arm dynamics.
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Figure 5: Three random rollouts. The rollouts shown in the second and third rows are highly similar
with minor spatial variation, whereas the fourth row shows a distinct physically plausible future.
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