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Abstract

Honey bees are a popular model for complex social systems, in which global behav-
ior emerges from the actions and interactions of thousands of individuals. While
the average life of a bee is organized as a sequence of tasks roughly determined by
age, there is substantial variation at the individual level. Using a unique dataset
containing lifetime trajectories of all individuals over multiple generations in two
honey bee colonies, we propose a new temporal matrix factorization model that
jointly learns the average developmental path and structured variations of individ-
uals in the social network over their entire lives. Our method yields inherently
interpretable embeddings that are biologically plausible and consistent over time,
which allow one to compare individuals regardless of when, or in which colony,
they lived. Our method provides a quantitative framework for understanding behav-
ioral heterogeneity in complex social systems applicable in fields such as behavioral
biology, social sciences, neuroscience, and information science.

1 Introduction

Animals living in large groups often coordinate their behaviors, resulting in emergent properties
at the group level, from flocking birds to democratic elections. In most animal groups, the role an
individual plays in this process is thought to be reflected in the way it interacts with group members.
Technological advances have made it possible to track all individuals and their interactions in animal
societies, ranging from social insects to primate groups (Mersch et al., 2013; Gernat et al., 2018;
Mathis et al., 2018; Graving et al., 2019; Pereira et al., 2019). These datasets have unprecedented
scale and complexity, but understanding these data has emerged as a new and challenging problem in
itself (Pinter-Wollman et al., 2014; Krause et al., 2015; Brask et al., 2020).

A popular approach to understand high-dimensional data is to learn semantic embeddings (Frome
et al., 2013; Asgari and Mofrad, 2015; Camacho-Collados and Pilehvar, 2018; Nelson et al., 2019).
Such embeddings can be learned without supervision, are interpretable, and are useful for accomplish-
ing downstream tasks. Individuals in animal societies can be described with semantic embeddings
extracted from social interaction networks using matrix factorization methods. For example, in
symmetric nonnegative matrix factorization (SymNMF), the dot products of any two animals’ factor
vectors reconstruct the interaction matrix (Wang et al. (2011); Shi et al. (2015)). If the embeddings
allow us to predict relevant behavioral properties, they serve our understanding as semantic repre-
sentations. In temporal settings, i.e. when the interaction matrices change over time, there is no
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Figure 1: Overview of the method: We learn a parametric function describing the average life
trajectory and a set of basis functions of individual variation (a). For each individual, a learned
embedding captures to what extent the lifetime can be described by the basis functions (b and c¢). At
each time point, factors can be extracted from the individual lifetime trajectories (d) to reconstruct
the interaction affinity between individuals (e). Note that the lifetime trajectories are functions of the
individuals’ ages, while interactions can occur at any time point.

straightforward extension of this algorithm. The interaction matrices at different time points can be
factorized individually, but there is no guarantee that the embeddings stay semantically consistent
over time.

We approach this question using honey bees, a popular model system for studying individual and
collective behavior (Elekonich and Roberts, 2005). Bees allocate tasks across thousands of individuals
without central control, using an age-based system: young bees care for brood, middle-aged bees
perform within-nest labor, and old bees forage outside (Seeley, 1982; Johnson, 2010). We propose to
exploit this age-based structure as an inductive bias by jointly learning two meaningful representations
of honey bee social behavior: a vector representation of the individuals’ functional position in the
social network on a given day, and a parametric representation of their lifetime trajectories through
this functional embedding. We show that these representations can be learned in an unsupervised
fashion, using only interaction matrices of the individuals over time. We analyze a dataset obtained
by tracking thousands of individually marked honey bees in two colonies, at high temporal and spatial
resolution over a total of 155 days, covering entire lifespans and multiple generations.

2 Methods

2.1 Temporal NMF algorithm

SymNMF factorizes a matrix A € Rf *N such that it can be approximated by the product FFT,
where F € RY*M and M < N:

N 2
F = argmin HA - FFTH A~ fG) FG)T  fl)=F. fG)eRY ()

Here we present a novel temporal NMF algorithm (TNMF) which extends SymNMF to temporal
settings in which A € RT N> changes over time ¢. We assume that the entities i € {0,1,..., N}
follow to some extent a common trajectory depending on an observable property (for example the
age of an individual). We represent an entity at a specific point in time ¢ using a factor vector
F(t,i) € RY such that

Avij=fr(ti) £rt)" A c RDNVN 41 ) e RY )
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Figure 2: Left: Mean lifetime trajectories according to mg. The model learns a sparse representation
of the functional position of the individuals in the social network. f; mostly corresponds to young
bees, and f3 predominantly describes middle aged and older bees. Only factors with a mean
magnitude of at least 0.01 are shown. Even though the model uses only these two factors, it is still
expressive due to individual variability, as can be seen in randomly sampled individuals’ lifetime
trajectories. Right: The individual factors f* and the proportion of time the individuals spent on
different nest substrates. This mapping can be used to interpret the biological meaning of the factors.
For example f7, which is associated with young bees (see Figure 2), correlates with time spent in the
brood area. This is biologically consistent, because young bees tend to care for brood.

In contrast to SymNMEF, we do not directly factorize A; to find the optimal factors that reconstruct
the matrices. Instead, we decompose the problem into learning a common trajectory of factors 1y
and structured variations from this trajectory 04 .-

F(t.1) = mo(c(t,i) + 0w (isc(t,i))  f7(¢4) = max(0, f(t,4)) 3)
c:NTXN N mg: N RY o4, : NVXT - RM
Note that in the simplest case c(t,7) = t, i.e. the trajectory of all entities is aligned with the temporal

dimension ¢ of A. In social networks ¢(t, 7) could map to the age of individual ¢ at time ¢.

We obtain o4 ,, from a learned set of individuality basis functions b,,, (shared among all entities) that
define a coordinate system of possible individual variations and individuality embeddings ey which
capture to what extent each basis function applies to an entity:

Ny,
0w (iyc(t, i) =D eg(i k) by, (c(t,i)) e : NN S RY b, :NT SR (4)
k=0

where NN, is the number of learned basis functions.

We implement the functions 14, b.,; with small fully connected neural networks with non-linearities
and several hidden layers. The parameters of these functions and the entities’ embeddings ey are
learned jointly using minibatch stochastic gradient descent:

. ) 2 N T
0,8, = argmin HA - AH +Rp Ry =N'TY0S max(0, - £(1,1)  (5)
0,w,p =0 t=0

where the regularisation term ¢~ is added to encourage the model to learn positive values for all
possible inputs because the gradient of the max operation in equation 3 is zero for negative values.

2.2 Regularization

We use several regularization terms to increase the interpretability and semantic consistency of the
model. See appendix A.1 for details.



2.3 Data

Two colonies of honey bees were continuously

recorded over a total of 155 days. Each individ- Table 1: Honey bee datasets

ual was manually tagged at emergence, so the Dataset Days Individuals Interaction pairs
date of birth is known for each bee. Locations BN16 56 2443 43174748
and identities of all honey bees (N=9286) were ~ gN19 99 6843 167 366 381

extracted from the raw images and used to con-
struct daily aggregated temporal interaction networks based on spatial proximity. We embed all
individuals from these two datasets into a common space of individuality embeddings e and factor
vectors fT.

3 Results

We implemented the model using PyTorch (Paszke et al., 2019) and trained it in minibatches of 128
individuals for 100 000 iterations with the Adam optimizer (Kingma and Ba, 2015). See appendix A.3
for the architecture of the learned functions, a precise description of the regularization losses and
further hyperparameters. The code is publicly available '.

The model learns a sparse representation of the developmental trajectory of a honey bee in the space
of social interactions. Only two factors are effectively used (they exceed the threshold value of 0.01).
These factors show a clear trend over the life of a bee, indicating that the model captures the temporal
aspects of the honey bee division of labor (See Figure 2).

Most individuals can predominantly be described by a single basis function. That means that while
each honey bee can collect a unique set of experiences, most can be described with a few individuality
blueprints which are consistent across cohorts and colonies. In the context of honey bee division of
labor, the basis functions are interpretable because the factors correspond to different task groups.

For example, wq1 (accounting for & 24.5% of the individuals) describes workers that occupy nursing
tasks over their lives, whereas wg (accounting for ~ 9.9% of the individuals) describes workers that
associate with in-hive duties such as honey storage later, but also stronger than average. As the
lifetime embeddings e, only scale the magnitude of the basis functions, they can be interpreted in the
same way. Individual lifetime trajectories in the factor space can be computed based on the mean
lifetime trajectories (1mg), individuality basis functions (b,,) and lifetime embeddings (e4).

Clustering of lifetime embeddings
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Figure 3: Clustering of lifetime embeddings: Most individuals strongly correspond to a single
individuality basis function, making it easy to cluster their lifetime social behavior (i.e. each individual
has a high value in a single dimension for their lifetime embedding). Because each cluster is strongly
associated with a specific individuality basis function, and because each basis function is interpretable
(Figure 2), these blueprints of lifetime development can also be intuitively understood and compared.
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4 Conclusion

Temporal NMF factorizes temporal matrices with overlapping and even disjointed communities by
learning a common embedding of the lifetime development of the individual entities. In the context
of honey bees, this embedding is biologically meaningful, consistent over time, and shows that
interaction patterns follow a common lifetime trajectory. Differences from the mean are described in
a coordinate system of individual variability. The basis functions are interpretable with respect to the
division of labor within colonies, and offer a valuable tool to understand and quantify the influence
of experimental manipulations on an individual While we applied our method to honey bees as an
exemplary system with many individuals that exhibit an entangled, non-overlapping social structure,
our method can be applied to any setting in which some interaction structure follows a general pattern
over an observable (such as time) to detect structured deviations at the individual level.
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A Appendix

A.1 Regularization terms

We encourage sparsity in both the number of used factors and individuality basis functions by adding
L1 penalties of the mean absolute magnitude of the factors f(t,) and basis functions b,,; to the
objective. We encourage individuals’ lifetimes to be represented with a sparse embedding using an
L, penalty of the learned individuality embeddings e 4. We also introduce an adversarial loss term
to encourage the model to learn embeddings that are semantically consistent over time, i.e. to only
represent two entities that were present in the dataset at different times with different embeddings if
this is strictly necessary to factorize the matrices A. We jointly train a discriminative network dy, (e)
that tries to classify the time of first occurrence of all entities based on their individuality embeddings
e. The cross-entropy loss of this model is added as a regularization term to equation 5 in a training
regime similar to generative adversarial networks (Goodfellow et al., 2014). We found that the model
performs well without these regularizations, but we are willing to accept a higher methodological
complexity for the honey bee data if this allows us to achieve a better interpretability of the results.
See appendix A.1 for more details.

N; Ng

Rembeddings = )\f:mbs:ddings-Z\/v;1 Z Z|€¢(i, k)‘ (6)
i=0 k=0
N; N

Rf = )\foactorsNiil Z Z f+ (ta 7/) (7)
=0 t=0
N, N

Rpasis = )\basisN(:l Z Z|bwk (a)| N, =60 (8)
a=0 k=0

where N, can be any number higher than the oldest individual in the dataset at any time.
& exp(x;[c])
Ragy = XaaeN; 1)~ log <N> ©)
i=0 >_q exp(@i[c])

where x; is a one-hot vector for each individual encoding the day it emerged in the dataset and N,
the number of days in the dataset. E.g., if the data consists of four days and individual 3 emerged on
the second day, then 3 = [0, 1,0, 0].

A.2 Network architecture

We use the following neural network architecture for the functions mg, b,,, and d.:

Linear(N;,, N;,) — LReLU — Linear(N},, Nj,) — LReLU — Linear(Np, Noyt)

N;-times

where Linear is an affine transformation f(xz) = Az + b and a = 0.3 for the Leaky ReLU activation
function. For my and b,: N;, = 1 (the individuals’ ages). For mg: Noy = Ny and for b,:
Nout = Nka. For dw: Nin = Nk and Nout = Nlabels~

A.3 Hyperparameters

The scaling factors for the regularization losses (see Table 2) were manually selected by increasing
each factor until it prevented the model from converging (i.e. the reconstruction loss of the full model
FT(t,4) did not improve on the age model my). This initial set of hyperparameters was then manually
refined such that each regularization loss was still effective (e.g. the factor regularization loss L
reduced the total number of factors effectively used by the model). Overfitting was not a concern
because the model is fitted unsupervised and the goal of the hyperparameter selection was to find a
set of parameters that is sparse and interpretable, and not to increase the predictive capabilities of the
learned factors.



Table 2: Hyperparameters used in the evaluated models (if not stated otherwise)

Parameter Value Description

N, 3 Number of hidden layers

Np, 64 Hidden layer size

Ny 8 Number of factors

Ni 16 Number of individuality basis function
Nlabels 100 Number of cohorts

Npateh 128 Minibatch size

Niteps 100000 Number of training iterations

At 0.1 Factor L, regularization

Aady 0.1 Factor L; regularization

Abasis 0.01 Basis function L regularization
Aembeddings 0.1 Embedding L; regularization
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