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Abstract

Graph Neural Networks (GNNs) are the subject of intense focus by the machine
learning community for problems involving relational reasoning. GNNs can be
divided into spatial and spectral approaches, which represent different ways to gen-
eralize the convolutional inductive bias to graph structured data. Here we introduce
Spectral Graph Networks, which apply message passing in both the spatial and
spectral domains. Briefly, our model projects vertex features of the spatial graph to
and from the Laplacian eigenvectors, which are each represented as vertices in a
fully connected “spectral graph.” We apply this model to various benchmark tasks
including graph-based of MNIST classification, molecular classification (Molecu-
leNet), and molecular property prediction (QM9). The Spectral GN promotes
efficient training, reaching high performance with fewer training iterations despite
having more parameters. The model also provides robustness to edge dropout and
outperforms baselines for the classification tasks.

1 Introduction

Many machine learning problems involve data that can be represented as a graph, whose vertices
and edges correspond to sets of entities and their relations, respectively. These problems have driven
the development of graph neural networks (GNNs) [Scarselli et al., 2008], which adapt the notion of
convolution on Euclidean signals to the graph domain [Bronstein et al., 2017]. Here we introduce
a new GNN architecture which bridges two dominant approaches within the field—the spatial and
spectral approach—to favorably trade-off their comparative strengths and weaknesses.

Spatial approaches involve a form of learned message-passing [Gilmer et al., 2017] that propagates
information over the graph by a local diffusion process. Spectral approaches [Bruna et al., 2013]
generalize the Fourier transform of Euclidean signals to graphs, providing access to information over
short and long spatiotemporal scales simultaneously. Spatial approaches have tended to be more
popular recently; however, a limitation is that propagating information over long ranges can require
many rounds of message-passing, resulting in fine-grained information being corrupted or lost.

To overcome this limitation, our Spectral Graph Network (GN) architecture performs message-passing
over the input graph’s structure—the “spatial graph”—as well as message-passing in a high-level
“spectral graph”. This allows long-range information to be pooled, processed, and transmitted between
any vertices in the spatial graph, which confers an inductive bias toward explicitly incorporating
the global topology of the graph into its processing. We test our Spectral GN on a graph MNIST
classification task and on two distinct molecular property prediction tasks. Our model achieves
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Figure 1: (A) Spectral GraphNet Schematic. The spatial graph, Gm, is processed by the GNNG

network (green graphs and arrow). The spectral graph, Γm, is processed in parallel by the GNNΓ

network (purple graphs and arrow). The eigenpooling operation (cyan bubble) communicates Gm’s
vertex information to Γm+1, weighted by the eigenvector values (blue/red lines). The eigenbroad-
casting operation (yellow bubble) communicates Γm’s vertex information to Gm+1, weighted by the
eigenvector values. (B) Spectral Filters UK=4 (first 4 non-thresholded eigenvectors). (C) Thresholded
Spectral Filters θ(UK=4), first 4 eigenvectors UK=4 (top row), and their negatives, −UK=4 (bottom
row), thresholded at 0. Vertex coloring indicates weights on each spatial latent applied before pooling.

high performances, more efficient training, and is more robust to dropped input vertices and edge
sparsification in the model. These results demonstrate how spatial GNN approaches can benefit from
low frequency information provided by spectral approaches.

2 Model

2.1 Graph Theory Background

Let G = (V,E) be a graph containing vertices V and directed edges E. Let vi ∈ V be the vertex
features for vertex i, (ek, rk, sk) ∈ E contain the edge features, sender indices, and receiver indices,
respectively, and g be graph-level “global” features. The adjacency matrix, A, is defined such that
Aij = 1 if (·, i, j) ∈ E and 0 otherwise. The degree matrix D is diagonal with Dii =

∑
j Aij .

The graph Laplacian matrix is L = D − A [Chung, 1994]. The eigendecomposition of L, L =
U · diag(Λ) · U>, where U is the matrix of |V | eigenvectors and Λ vector of eigenvalues. The
operation U>φ projects a signal φ over graph nodes into the spectral domain. These K eigenvectors
with the smallest eigenvalues distinguish vertices that will be slowest to share information under
diffusion (or, similarly, message passing) [Shi and Malik, 2000]. Other applications include spectral
clustering [Ng et al., 2002] and graph coarsening [Ortega et al., 2018].

2.2 Our Spectral GN model

Spatial and Spectral GraphNets. The input “spectral graph” is a complete graph with K vertices
corresponding to the K smallest eigenvalues of input spatial graph X’s graph Laplacian. The vertex
features are initialized to the eigenvalues, Λ:K . The spatial and spectral input graphs are processed
by vertex and edge-wise MLP encoders to yield G0 and Γ0, respectively.

On the m-th message passing step, spatial and spectral GNNs, GNNG and GNNΓ, are applied to Gm

and Γm, respectively (horizontal lines between m and m+ 1 steps in Figure 1A). After M rounds
of message passing, an MLP decoder processes GM and returns graph output Y . For graph-level
classification, the loss is applied to the global feature of Y .

For the GNNs, we implemented the GN, Graph Convolution Network (GCN), and (for spectral
processing only) the Graph Fourier Transform (GFT). The GCN is a popular, lightweight spatial
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Figure 2: Graph MNIST results. (A) Learning
curves showing classification test accuracy (y-axis)
across training iterations (x-axis). (B) Accuracy
(y-axis) of U -GN with increasing vertex dropout
proportion (x-axis). (C) Accuracy (y-axis) of U -
GN with increasing number of shortest paths re-
moved (x-axis).

approach that has fewer parameters and no global term. The GFT, inspired by [Bruna et al., 2013],
applies an MLP to the spectral latents ordered by eigenvalue.

Eigenpooling/broadcasting. Vertex features of Gm are projected onto the k-th vertex in the spec-
tral domain via multiplication with the k-th eigenvector U·,k, or, in matrix form, V̄ Γ

m+1 = U>V G
m

(Figure 1A, blue). For notational simplicity, we let U be the truncated K eigenvector matrix. These
eigenpooled vertices, V̄ Γ

m+1, are concatenated onto the spectral vertices, V̂ Γ
m+1, to form V Γ

m+1. Simi-
larly, vertex features of Γm are projected to the i-th vertex in the spectral domain via multiplication
with Ui,·, or, in matrix form, V̄ G

m+1 = UV Γ
m (Figure 1A, yellow). These eigenbroadcasted spectral

vertices, V̄ G
m+1, are concatenated onto the spatial vertices, V̂ G

m+1, to form V G
m+1.

We also explored a modified version termed “Spectral Threshold GN” (θ(U)-GN), which thresholds
U at 0, and uses concat[θ(U), θ(−U)] as the projection matrix (Figure 1B,C). It thus has 2K the
number of spectral graph vertices, whose input for initialization are the duplicated eigenvalues. The
U -GN refers to a Spectral GN with no thresholding.

Further considerations. By treating the eigenvectors as an unordered set labelled by eigenvalue,
our approach helps circumvent instabilities and degeneracies that challenge previous approaches
which treat them as a sequence ordered by eigenvalue. If we use K = 1, this is analogous to using a
global term for graph-level communication [Gilmer et al., 2017, Battaglia et al., 2018].

Compared to other hierarchical GNN schemes [Mrowca et al., 2018, Li et al., 2018, Ying et al., 2018],
Spectral GN uses the matrix of eigenvectors to exchange low- and high-level vertex information.
Intuitively, the spectral augmentation can also be thought of as nonlinear low pass filtering on learned
latents [Ortega et al., 2018]. Eigendecompositions can be expensive (O(N3)) to compute; however,
approximations [Hammond et al., 2009] and learned models [Pfau et al., 2018] can help.

3 Experiments

We evaluated our models and baselines on three graph property prediction tasks: Graph-MNIST [Def-
ferrard et al., 2016], MoleculeNet-HIV molecule classification [Wu et al., 2018], and QM9 quantum
molecular property prediction [Ramakrishnan et al., 2014]. Across these benchmarks, we found that
our hybrid spectral architectures yielded efficient training, were more robust to both missing vertices
in the inputs and pruned edges during message passing, and in two cases (MNIST, MoleculeNet-HIV)
yielded higher overall performance. For molecular tasks, the thresholded Spectral GNs were stronger
while for MNIST, others the non-thresholded ones were. For all experiments, results tables, learning
curves, and training details can be found in the Appendix.

3.1 Graph MNIST

MNIST handwritten digit classification [LeCun et al., 1998] can be adapted for graphs by treating
each pixel as a vertex and placing an edge between neighboring pixels [Defferrard et al., 2016]. Each
sample consists of a 28× 28 grid and and edges join the four axis-aligned neighbors (no superpixels).
Vertex features were the pixels’ intensities and edge features contained the 2D displacement vector
from sender to receiver vertex position. Under “uniform vertex dropout”, vertices were uniformly
randomly removed from each graph (pdropout ∈ [0, 0.1, 0.2]). Under “shortest path vertex dropout”,
pairs of vertices were randomly selected, and all of the vertices along one of the shortest paths
connecting them were removed (npaths ∈ [0, 1, 2, 3]).
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Figure 3: Molecular classification results. (A) Learning curves showing ROC-AUC (y-axis) across
training iterations (x-axis) for GN, U -GN, and θ(U)-GN. Red line indicates t = 50 training iterations.
(B) ROC-AUC across all spectral models, with U and θ(U) augmentation, sampled at t = 50
iterations. Models shown in (A) marked with boxes whose outline colors match their colors in (A).
(C) Learning curves showing test loss early in training for an example QM9 target, ZPVE. Blue
lines are networks without spectral information, Orange is θ(U) (k = 2) and Green is θ(U) (k = 4).
Spectral models show better performance early on in training. (D) Final test MAE in target units,
with best performing spectral model displayed per edge dropout value. Target units in Appendix.

Our U -GN reached the highest performance, trained more efficiently, and was more robust to vertex
dropout (Figure 2). The U -GN spectral approach (0.992) outperformed GCN (0.8451), GN-GFT
(0.925), and GCN-GFT (0.925) for 0 dropout, and outpeformed thresholded θ(U)-GN (0.978). The
GCNs deteriorated rapidly under dropout, while GN-GFTs deteriorated specifically under shortest
path dropout. However, the vanilla GN showed a greatest decrement in performance compared
with the Spectral GNs under node dropout (Figure 2B). U -GN (K = 4 or K = 8) was the highest
performing model under random shortest path vertex dropout (Figure 2C). However, increased
dropout proportions appeared to weaken the U -GN and vanilla GN comparably, suggesting these
perturbations to the global structure were harder for the Spectral GNs to overcome.

3.2 Molecular Property Prediction (MoleculeNet-HIV and QM9)

MoleculeNet-HIV involves predicting if a molecule can inhibit HIV replication from its molecular
graph [Wu et al., 2018, Hu et al., 2020]. QM9 is a quantum chemistry benchmark that that involves
predicting 13 target properties from the annotated molecular graph [Ramakrishnan et al., 2014]. As is
standard, we use separately trained models for each target and target whitening [Gilmer et al., 2017].

For both benchmarks, thresholded θ(U) augmented spectral models trained more efficiently than
other models. The θ(U)-GNs (k = 4) reached 87% of state of the art in ~60 iterations (1920 samples),
while GCN and GN took ~500 and ~10,000 iterations, respectively. For QM9, we found that the
spectral models’ MAE was lower for the first ~20K steps of training (Figure 3C).

Final performance on MoleculeNet-HIV was comparable to the top GNN methods on the Open Graph
Benchmark leaderboard, GCN+GraphNorm (ROC-AUC=0.7883) [Hu et al., 2020, Dwivedi et al.,
2020]. Our GNs reached scores of 0.739 ± 0.029, U -GN 0.753 ± 0.028, and θ(U)-GN (K = 4)
0.769± 0.015. For QM9, the vanilla GN was the top performing model among those were evaluated.
Spectral GCNs did outperform vanilla GCNs. Our models were neither molecule-specific nor tailored
to QM9, and did not reach state of the art performance, generally having 2–10× SOTA MAE.

GNNs typically train more efficiently but perform worse with sparsified edges. We tested whether
message passing over the spectral graph could potentially compensate for edge dropout of 50% and
100% to allow more efficient procesesing. We found that spectral significantly outperformed their
vanilla counterparts under 100% edge removal (Figure 3D, orange-dashed U -GN outperforming
blue-dashed GN for 12/13 targets), but did not reach the solid lines denoting the non-sparsified graph.
For 50% edge dropout: U -GN had lowest error for 5/13 targets, and for 0%, 2/13.

4 Conclusion

We introduce Spectral GraphNets, which combine spatial and spectral GNNs. Across our experiments,
we find that the Spectral GNs reach competitive performance, train efficiently, and compensate for
missing vertices in the data and edge dropout in the GN.
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Appendices
A Implementation
Models were trained with learning rate of 10−4 for 250K steps (Graph MNIST), 5 · 10−4 for 50K steps
(MoleculeNet-HIV), or 5 · 10−4 for 107 steps (QM9). The encoders, decoders, vertex, edge, and global
updating functions all consisted of MLPs with 3 layers, 32 hidden units, and ReLU activation functions.
Layer norm was applied to the output of the encoder and all message passing networks, and the activation
function was not applied to the last layer of the networks performing message passing. The update
functions were further modified to access the history of latents: at each round of message passing, initial,
previous, and current latents were concatentated. Empty edge or node feaatures in the input were
initialized to 1.

The total number of parameters varies between GN, GCN, GN-GFT, and GCN-GFT because these
MLPs are composed in different ways. GCNs do not have globals or edge updating functions. For the
GFT (Graph Fourier Transform) spectral core, spectral vertices were ordered by eigenvalue index and
reshaped into a K × nlatents vector, then fed processed by an MLP. Rather than repeating the same GN
or GCN for each iteration of message passing, a unique core was used for each step. This permits each
step of message passing to apply a different function.

B Dataset Overview
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Figure B.1: (A) Distribution of number of vertices per graphs across tasks (B) Distribution of diameter
per graphs across tasks
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Figure B.2: Samples from Graph MNIST with various levels of dropout. First 4 Laplacian eigenvectors
and eigenvalues are shown.
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C MNIST

C.1 MNIST Learning Curves

Multiple Message Passing Steps

Index added to eigenvalues

Varying Number of Shortest Paths Removed

Varying Uniform Vertex Dropout

C

D

B

A

Figure C.4: Learning curves for GN and spectral U -GNs. Curves depict mean and standard deviation for
each model type averaged over 5 seeds. Unless otherwise noted, runs have 0 shortest path dropout and 3
steps of message passing. (A) Varying rates of vertex dropout. (B) Varying numbers of shortest paths
removed (vertex dropout rate = 0.1). (C-D) Varying numbers of message passing iterations (vertex
dropout rate = 0.2). In (C), solid line indicates U -GN, dashed line GN+U appended to vertex inputs.
In (D), all runs use U -GN with eigenvalue index appended to eigenvalues in the inputted spectral graph.

MNIST: Message passing iterations Since the spectral models should, in principle, more easily
aggregate information across large distances, we evaluated how the spectral models compared to simply
increasing the number of message passing steps (using a uniform vertex dropout rate of 0.2).

As shown in Appendix Table C.3, and Figures C.4 and 2C,D, for 1 message passing step, the non-
spectral GN, U -GN, and θ(U)-GN performed poorly, with accuracy of only 0.748− 0.753 in 250K steps.
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For 3 message passing steps, the spectral U4-GN and U8-GN had highest performance, with accuracy of
0.98 compared to the non-spectral GN’s 0.94. We expected increasing the number of message passing
steps to permit GN to approach the performance of U -GN. However, for 6 message passing steps, the
U -GN still reached higher performance earlier in training than GN (see Appendix Figure C.4) and after
250K steps, the non-spectral GN was still behind with an accuracy of 0.938 compared to U -GN’s 0.976
(K = 4). However, these models train considerably slower in terms of number of training iterations and
wall clock time, so it is possible this may have changed with evern more training time.

There were two experimental conditions under which a spectral model was able to excel with only 1
message passing iteration. The first was to simply append U to the inputted graph’s vertex features. This
suffers from degeneracies/instabilities since eigenvectors are ordered by index (Section ??) and does not
permit the eigenvectors to explicitly route messages. However, this does permit vertices to access global
information. Generally, integrating the eigenvectors via spectral message passing had better performance
than providing the eigenvectors as input (Appendix Table C.3; Figures ??C-D). However, for only 1
message passing step, the appended eigenvectors significantly outperformed the spectral message passing
model.

The other condition was to append vertex index information to the incoming spectral graph. Typically,
the vertex latents of the spectral graph are set to the eigenvalue corresponding to each vertex. We also
experimented with appending a one-hot indicating the index of that eigenvector. In theory, this should
be easy for the spectral graph to deduce with a small number of message passing iterations. However, in
the absence of a large number of message passing steps, appending eigenvalue index boosted learning for
1 but had no discernible effect for 3 or 6 message passing iterations (Appendix Table C.3).
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C.2 MNIST Tables

0% Vertex Dropout

K 0 2 4 8

U GCN 0.846±0.010 0.849±0.007 0.851±0.004 0.851±0.005
GCN-GFT 0.846±0.010 0.882±0.009 0.925±0.007 0.867±0.023
GN 0.979±0.002 0.983±0.002 0.991±0.001 0.992±0.001
GN-GFT 0.979±0.002 0.984±0.002 0.987±0.002 0.985±0.002

θ(U) GCN 0.846±0.010 0.571±0.022 0.561±0.019 0.564±0.010
GCN-GFT 0.846±0.010 0.551±0.013 0.599±0.028 0.580±0.005
GN 0.979±0.002 0.977±0.003 0.978±0.003 0.947±0.045
GN-GFT 0.979±0.002 0.935±0.010 0.951±0.011 0.923±0.029

10% Vertex Dropout

U GCN 0.694±0.007 0.696±0.006 0.694±0.006 0.691±0.009
GCN-GFT 0.694±0.007 0.730±0.007 0.782±0.028 0.638±0.040
GN 0.968±0.003 0.973±0.002 0.987±0.004 0.987±0.002
GN-GFT 0.968±0.003 0.973±0.004 0.982±0.004 0.977±0.003

θ(U) GCN 0.694±0.007 0.467±0.006 0.467±0.009 0.466±0.005
GCN-GFT 0.694±0.007 0.425±0.013 0.442±0.016 0.439±0.019
GN 0.968±0.003 0.967±0.004 0.967±0.011 0.974±0.009
GN-GFT 0.968±0.003 0.915±0.045 0.905±0.058 0.828±0.030

20% Vertex Dropout

U GCN 0.566±0.008 0.567±0.007 0.561±0.010 0.566±0.011
GCN-GFT 0.566±0.008 0.565±0.016 0.605±0.014 0.456±0.024
GN 0.940±0.005 0.950±0.004 0.977±0.002 0.980±0.005
GN-GFT 0.940±0.005 0.946±0.004 0.970±0.008 0.948±0.007

θ(U) GCN 0.566±0.008 0.424±0.017 0.419±0.008 0.406±0.021
GCN-GFT 0.566±0.008 0.358±0.012 0.351±0.023 0.372±0.009
GN 0.940±0.005 0.940±0.004 0.941±0.020 0.945±0.015
GN-GFT 0.940±0.005 0.874±0.060 0.817±0.060 0.738±0.063

Table C.1: (Above) Overall best test classification accuracy across 5 seeds given 2.5e5 training steps for
different GraphNet architectures.
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0 paths removed, 10% Vertex dropout

K 0 2 4 8

U GCN 0.694±0.007 0.696±0.006 0.694±0.006 0.691±0.009
GCN-GFT 0.694±0.007 0.730±0.007 0.782±0.028 0.638±0.040
GN 0.968±0.003 0.973±0.002 0.987±0.004 0.987±0.002
GN-GFT 0.968±0.003 0.973±0.004 0.982±0.004 0.977±0.003

θ(U) GCN 0.694±0.007 0.467±0.006 0.467±0.009 0.466±0.005
GCN-GFT 0.694±0.007 0.425±0.013 0.442±0.016 0.439±0.019
GN 0.968±0.003 0.967±0.004 0.967±0.011 0.974±0.009
GN-GFT 0.968±0.003 0.915±0.045 0.905±0.058 0.828±0.030

1 path removed, 10% Vertex dropout

U GCN 0.625±0.019 0.646±0.001 0.641±0.003 0.631±0.015
GCN-GFT 0.625±0.019 0.632±0.009 0.599±0.018 0.511±0.011
GN 0.957±0.006 0.960±0.005 0.981±0.000 0.981±0.004
GN-GFT 0.957±0.006 0.956±0.007 0.973±0.001 0.954±0.006

θ(U) GCN 0.625±0.019 0.446±0.006 0.436±0.005 0.446±nan
GCN-GFT 0.625±0.019 0.362±0.034 0.397±0.032 0.400±0.018
GN 0.957±0.006 0.914±0.052 0.941±nan 0.955±0.012
GN-GFT 0.957±0.006 0.844±0.085 0.862±0.088 0.762±0.032

2 path removed, 10% Vertex dropout

U GCN 0.595±0.009 0.605±0.004 0.595±0.006 0.593±0.008
GCN-GFT 0.595±0.009 0.583±0.002 0.525±0.005 0.470±0.014
GN 0.945±0.006 0.949±0.005 0.969±0.001 0.971±0.005
GN-GFT 0.945±0.006 0.952±0.001 0.957±0.007 0.934±0.010

θ(U) GCN 0.595±0.009 0.438±0.015 0.430±nan 0.423±0.004
GCN-GFT 0.595±0.009 0.385±0.013 0.353±0.021 0.365±0.023
GN 0.945±0.006 0.943±0.002 0.837±0.205 0.936±0.014
GN-GFT 0.945±0.006 0.788±0.007 0.768±0.023 0.748±0.009

3 path removed, 10% Vertex dropout
K 0 2 4 8

U GCN 0.567±0.007 0.579±nan 0.559±0.014 0.568±0.009
GCN-GFT 0.567±0.007 0.559±0.005 0.483±0.007 0.427±0.020
GN 0.942±0.003 0.939±0.003 0.953±0.005 0.964±0.007
GN-GFT 0.942±0.003 0.936±nan 0.949±0.006 0.922±0.009

θ(U) GCN 0.567±0.007 0.414±0.007 0.407±nan 0.408±0.001
GCN-GFT 0.567±0.007 0.366±0.008 0.340±0.010 0.343±0.015
GN 0.942±0.003 0.936±nan 0.951±nan 0.918±0.024
GN-GFT 0.942±0.003 0.945±nan 0.816±0.104 0.822±0.099

Table C.2: (Above) Overall best test classification accuracy across 5 seeds given 2.5e5 training steps
for different GraphNet architectures. Left column specifies the rate of random vertex dropout. Varying
levels numbers of shortest paths removed.
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1 processing steps, 20% Vertex Dropout

K 0 2 4 8

U GN spectral MP 0.746±0.003 0.749±0.007 0.748±0.004 nan±nan
as input 0.746±0.003 0.795±0.005 0.915±0.004 0.921±0.006

GN index eigvals 0 0.764±nan 0.877±nan 0.864±0.023
3 processing steps, 20% Vertex Dropout

U GN spectral MP 0.940±0.005 0.950±0.004 0.977±0.002 0.980±0.005
U as input 0.940±0.005 0.937±0.009 0.964±0.003 0.961±0.011
index eigvals 0.940±0.005 0.948±0.001 0.982±0.001 0.985±0.001
6 processing steps, 20% Vertex Dropout

U GN spectral MP 0.938±0.008 0.943±0.006 0.976±0.005 nan±nan
U as input 0.938±0.008 0.946±0.008 0.963±0.007 0.963±0.005
index eigvals 938±0.008 0.956±0.001 0.979±0.002 0.971±0.008

Table C.3: Overall best test classification accuracy across 5 seeds given 2.5e5 training steps for different
GraphNet architectures. Left column specifies the rate of random vertex dropout. Varying levels numbers
of message passing steps.
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D OGB-MOLHIV

D.1 Supplementary Methods
MoleculeNet consists of a set of molecular property prediction benchmarks [2]. One of the largest datasets
within MoleculeNet is the HIV dataset, in which the challenge is to predict a binary target indicating
whether a molecule has an experimentally measured ability to inhibit HIV replication. This benchmark
allows us to assess the benefits of spectral augmentation on chemical graph property prediction, a dataset
with very different structure to images. The input data consists of a molecular graph in which vertices
are atoms and edges bonds, and vertex and edge features identify key properties of the atoms and bonds.
Both atoms and bonds were encoded as 100 dimensional feature vectors using Open Graph Benchmark’s
atom and bond encoders, respectively. The dataset consists of 41,127 small, sparse molecular graphs (on
average, #vertices=25.5, #edges=27.7, diameter=12.0) and is skewed such that 2.7% of the dataset is
labelled positive (see Appendix Figure B.1 for statistics across datasets). This dataset is available on
Open Graph Benchmark [1].

D.2 Tables and Figures

Figure D.5: Model performance over time for GN, GCN, GN-GFT, and GCN-GFT, and their spectral
variants, U and θ(U), on MoleculeNet-HIV.

MoleculeNet HIV Results

K 0 2 4 8

U GCN 0.755±0.015 0.751±0.019 0.743±0.021 0.761±0.030
GCN-GFT 0.755±0.015 0.743±0.017 0.736±0.017 0.741±0.014
GN 0.739±0.029 0.753±0.028 0.747±0.023 0.746±0.019
GN-GFT 0.739±0.029 0.748±0.024 0.743±0.024 0.742±0.020

θ(U) GCN 0.755±0.015 0.755±0.020 0.759±0.020 0.750±0.032
GCN-GFT 0.755±0.015 0.754±0.024 0.734±0.018 0.744±0.014
GN 0.739±0.029 0.764±0.016 0.769±0.015 0.748±0.018
GN-GFT 0.739±0.029 0.758±0.015 0.745±0.025 0.734±0.014

Table D.4: Best performances of each model on MoleculeNet-HIV in terms of ROC-AUC.
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Literature Leaderboard

GatedGCN 0.7765±0.0050
GIN+virtual vertex 0.7707±0.0149
GCN 0.7606±0.0097
GCN+virtual vertex 0.7599±0.0119
GIN 0.7558±0.0140
Graph-agnostic MLP 0.6819±0.0071

Table D.5: Leaderboard showing the performance of various literature models on MoleculeNet-HIV [1]
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E QM9

E.1 Supplementary Methods
Molecules within the dataset consist of Hydrogen, Carbon, Oxygen, Nitrogen and Fluorine atoms and
contain up to 9 heavy (non Hydrogen) atoms. The dataset consists of 134k molecules, of which 10k
are randomly selected for validation and test sets. The vertex features in our input graph consist of
atom coordinates, atomic number, formal charge, hybridization, Mulliken particle charge and whether
it is aromatic. Edges are defined by the chemical graph, and where applicable edge features of bond
type, bond length and bond vector are provided. For targets U0, U, H and G, the reference energy is
subtracted. For this task, we train for 5 million steps with a latent size of 32.
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E.2 Tables and Figures

Edge Dropout = 0.0
Unit GN GN-U (n=2) GN-U (n=4) GN-Uthresh (n=2) GN-Uthresh (n=4)

Cv cal/(mol K) 0.07±0.0 0.15±0.0 0.15±0.0 0.10±0.0 0.11±0.0
G meV 59.35±0.3 90.27±27.8 61.77±7.8 63.81±9.0 63.18±6.2
H meV 69.24±21.2 73.89±3.8 62.10±0.4 79.64±21.8 67.03±0.4
HOMO meV 84.38±0.9 109.77±6.4 105.53±1.3 93.83±1.9 101.17±1.0
LUMO meV 81.19±0.4 98.06±1.4 103.09±1.9 93.16±2.9 102.01±6.5
R2 Bohr2 16.33±0.3 27.13±1.3 25.78±1.4 17.47±0.1 17.23±0.1
U meV 63.28±2.7 97.43±23.2 68.28±3.5 61.79±1.4 90.42±6.4
U0 meV 54.81±4.4 84.96±3.7 64.16±1.7 63.19±9.3 70.73±17.2
ZPVE meV 3.79±0.1 6.11±0.3 5.85±0.4 4.12±0.3 4.08±0.1
alpha Bohr3 0.23±0.0 0.39±0.0 0.34±0.0 0.28±0.0 0.28±0.0
gap meV 126.72±1.8 156.22±2.4 160.22±0.4 145.29±1.9 151.85±5.4
mu D 0.38±0.0 0.46±0.0 0.47±0.0 0.45±0.0 0.51±0.0

Edge Dropout = 0.5
Unit GN GN-U (n=2) GN-U (n=4) GN-Uthresh (n=2) GN-Uthresh (n=4)

Cv cal/(mol K) 0.12±0.0 0.15±0.0 0.13±0.0 0.14±0.0 0.12±0.0
G meV 127.54±16.7 110.92±17.6 80.57±4.7 119.07±18.4 115.22±13.9
H meV 122.17±6.8 118.39±39.6 98.61±13.3 106.03±1.6 124.93±19.0
HOMO meV 108.92±5.4 121.44±6.7 114.68±5.0 123.66±6.0 131.34±1.9
LUMO meV 107.12±0.3 112.95±2.8 110.66±0.7 115.74±6.1 120.44±2.5
R2 Bohr2 26.70±0.2 31.51±0.6 28.14±0.1 29.18±0.2 31.26±0.6
U meV 118.52±4.4 98.12±12.8 95.11±9.7 113.11±3.2 157.62±80.5
U0 meV 124.08±6.8 105.79±5.6 93.70±3.7 121.12±15.8 107.42±10.1
ZPVE meV 5.85±0.2 6.31±0.7 5.78±0.6 5.00±0.4 5.25±0.2
alpha Bohr3 0.35±0.0 0.42±0.0 0.41±0.0 0.39±0.0 0.39±0.0
gap meV 142.50±1.8 179.66±6.4 171.94±9.6 180.77±1.7 185.96±2.3
mu D 0.46±0.0 0.60±0.0 0.56±0.0 0.59±0.0 0.59±0.0

Edge Dropout = 1.0
Unit GN GN-U (n=2) GN-U (n=4) GN-Uthresh (n=2) GN-Uthresh (n=4)

Cv cal/(mol K) 0.28±0.0 0.21±0.0 0.17±0.0 0.20±0.0 0.21±0.0
G meV 215.91±5.5 168.73±1.2 133.99±21.0 163.65±22.2 145.04±12.4
H meV 232.32±14.9 179.32±1.8 125.08±3.2 172.41±26.4 150.03±2.8
HOMO meV 140.23±1.1 150.29±1.0 132.69±1.6 146.81±1.4 158.18±5.2
LUMO meV 138.37±0.6 134.81±1.2 126.81±7.8 140.53±4.9 141.94±0.0
R2 Bohr2 56.08±1.0 40.89±1.2 36.79±2.0 45.20±3.1 41.28±1.0
U meV 217.95±5.4 166.49±3.6 127.26±5.5 176.89±30.1 152.18±16.9
U0 meV 226.98±8.5 170.18±6.6 124.98±0.9 175.25±1.6 150.29±14.8
ZPVE meV 10.19±0.5 8.61±0.0 7.51±0.6 8.29±0.7 7.87±0.3
alpha Bohr3 0.58±0.0 0.53±0.0 0.49±0.0 0.52±0.0 0.51±0.0
gap meV 197.88±0.4 211.70±2.7 189.59±5.6 211.23±2.2 211.32±9.4
mu D 0.59±0.0 0.66±0.0 0.63±0.0 0.68±0.0 0.65±0.0

Table E.6: Mean Absolute Error across U and θ(U)-GN on QM9 targets with varying rates of edge
dropout.
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Edge Dropout = 0.0
Unit GCN GCN-U (n=2) GCN-U (n=4) GCN-Uthresh (n=2) GCN-Uthresh (n=4)

Cv cal/(mol K) 0.14±0.0 0.15±0.0 0.15±0.0 0.12±0.0 0.12±0.0
G meV 132.11±11.4 110.24±1.8 111.65±9.0 96.79±6.0 99.05±7.6
H meV 142.37±14.1 125.69±14.0 116.03±3.7 100.51±5.3 112.59±7.9
HOMO meV 107.71±2.3 117.86±1.8 120.90±2.9 109.94±1.1 113.43±0.5
LUMO meV 99.75±3.0 109.97±2.6 110.31±1.7 100.01±1.6 107.60±1.2
R2 Bohr2 27.32±1.0 30.12±0.1 32.37±0.4 25.44±0.0 27.07±1.0
U meV 133.49±2.8 131.09±12.5 143.50±26.4 95.45±1.1 100.23±3.0
U0 meV 128.15±6.8 133.82±23.0 112.08±1.6 101.20±8.3 99.07±13.7
ZPVE meV 5.60±0.0 5.67±0.2 5.59±0.2 5.42±0.9 5.11±0.2
alpha Bohr3 0.37±0.0 0.39±0.0 0.40±0.0 0.36±0.0 0.35±0.0
gap meV 143.96±0.6 167.64±2.8 166.84±3.4 153.15±0.7 155.86±0.9
mu D 0.43±0.0 0.53±0.0 0.53±0.0 0.50±0.0 0.52±0.0

Edge Dropout = 0.5
Unit GCN GCN-U (n=2) GCN-U (n=4) GCN-Uthresh (n=2) GCN-Uthresh (n=4)

Cv cal/(mol K) 0.32±0.0 0.25±0.0 0.24±0.0 0.20±0.0 0.18±0.0
G meV 330.67±8.2 282.96±16.0 272.90±2.4 166.69±12.9 167.59±3.5
H meV 370.21±5.8 280.86±13.6 287.68±7.8 164.55±2.1 161.74±0.7
HOMO meV 151.60±0.7 153.27±0.8 154.42±2.8 139.58±1.8 142.35±3.4
LUMO meV 144.57±1.8 143.03±0.2 148.15±0.5 131.56±1.2 133.95±2.3
R2 Bohr2 54.69±0.6 40.99±1.6 41.43±0.3 43.90±1.6 44.19±2.4
U meV 365.30±40.5 279.27±1.8 293.47±15.6 167.70±7.9 168.76±20.7
U0 meV 340.62±0.7 273.01±0.9 280.44±13.9 164.54±3.3 146.67±0.3
ZPVE meV 14.79±0.3 10.43±0.3 11.15±0.1 7.45±0.2 7.35±0.3
alpha Bohr3 0.70±0.0 0.60±0.0 0.61±0.0 0.48±0.0 0.48±0.0
gap meV 198.23±2.8 202.46±5.3 205.60±1.0 186.78±0.4 188.60±2.8
mu D 0.54±0.0 0.61±0.0 0.62±0.0 0.59±0.0 0.59±0.0

Edge Dropout = 1.0
Unit GCN GCN-U (n=2) GCN-U (n=4) GCN-Uthresh (n=2) GCN-Uthresh (n=4)

Cv cal/(mol K) 0.31±0.0 0.26±0.0 0.26±0.0 0.23±0.0 0.22±0.0
G meV 237.48±7.2 191.62±3.5 217.30±29.4 166.32±14.8 147.05±1.7
H meV 239.66±3.6 197.13±1.8 202.01±7.5 170.63±5.6 157.53±1.1
HOMO meV 148.98±0.6 157.66±3.0 162.34±0.4 140.05±1.0 142.38±1.1
LUMO meV 146.83±3.4 156.96±2.5 167.63±1.4 138.35±1.3 138.26±0.6
R2 Bohr2 58.94±0.5 42.20±0.7 47.38±0.1 46.61±1.4 45.23±0.4
U meV 251.92±5.7 197.72±4.3 203.85±2.5 169.65±2.1 172.10±18.7
U0 meV 249.59±7.0 208.01±24.1 197.44±3.0 166.86±10.5 154.57±15.7
ZPVE meV 11.42±0.0 8.84±0.2 9.35±0.2 9.87±0.6 7.92±0.4
alpha Bohr3 0.60±0.0 0.56±0.0 0.62±0.0 0.51±0.0 0.49±0.0
gap meV 202.90±1.6 225.53±1.9 235.63±5.7 198.51±3.8 194.22±4.3
mu D 0.57±0.0 0.65±0.0 0.69±0.0 0.60±0.0 0.60±0.0

Table E.7: Mean Absolute Error across U and θ(U)-GN on QM9 targets with varying rates of edge
dropout.
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Unit PPGN SchNet PhysNet MEGNet-s Comorant DimeNet

Cv cal/(mol K) 0.055 0.033 0.0529 0.05 0.13 0.0286
G meV 36.4 14 9.40 12 - 8.98
H meV 36.3 14 8.42 12 - 8.11
HOMO meV 40.3 41 32.9 43 36 27.8
LUMO meV 32.7 34 24.7 44 36 19.7
R2 Bohr2 0.592 0.073 0.765 0.302 0.673 0.331
U meV 36.8 14 8.15 12 - 7.89
U0 meV 36.8 14 8.15 12 - 8.02
ZPVE meV 3.12 1.7 1.39 1.43 1.98 1.29
alpha Bohr3 0.131 0.235 0.0615 0.081 0.092 0.0469
gap meV 60.0 63 42.5 66 60 34.8
mu D 0.047 0.033 0.0529 0.05 0.13 0.0286

Table E.8: Reported Results on QM9 in Literature
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Figure E.6: Early training curves for θ(U)-GCN and θ(U)-GN, with K = 0 (blue), K = 2 (orange), and
K = 4 (green).
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