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Abstract

Event-based cameras are novel, efficient sensors inspired by the human vision
system, generating an asynchronous, pixel-wise stream of data. Learning from
such data is generally performed through event integration into images. This
requires buffering long sequences and can limit the response time of the inference
system. In this work, we propose to directly use events from a DVS camera, which
produces a stream of intensity changes and their spatial coordinates. This sequence
is used as an input for a novel asynchronous RNN-like architecture, the Input-
filtering Neural ODE (INODE). INODE allows for input signals to be continuously
fed to the network, as done for filtering dynamical systems. INODE learns to
discriminate short event sequences and to perform event-by-event online inference.
We demonstrate our approach on a series of classification tasks, comparing against
a set of LSTM baselines. We show that, independently of the camera resolution,
INODE can outperform the baselines by a large margin on the ASL task and it is
on par with a considerably larger LSTM for the NCALTECH task. Finally, we
show that INODE is accurate even when provided with very few events.

1 Introduction
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Figure 1: Approach rationale. The standard way to perform machine learning on asynchronous event stream data
from DVS cameras consists in either integrating events into a 2D grid to be fed into convolutional networks or
converting them into traditional time series with some time discretization scheme. On the contrary, our method
requires no preprocessing or loss of information, and inherently handles the data stream’s asynchronous timing.
In the figure, blue and red dots represent events of different polarity respectively.
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Event-based cameras are asynchronous sensors that capture changes in pixel intensity as bi-
nary events, with very high frequency compared to RGB sensors. This makes them suit-
able for high speed applications, such as robotics [16, 10] and other safety-critical scenarios.

Figure 2: Event integration. This figure
shows the result of integrating 100 × 10
consecutive events into a pixel grid. Our
method trains and performs inference with-
out directly integrating events, but instead
processing one event at a time.

The Dynamic Vision Sensor (DVS) [20] is an event cam-
era that, compared to traditional sensors, has low power
consumption, high dynamic range, no motion blur, and
microsecond latency times. Due to their asynchronous
and binary format, there is no obvious choice of a model
class for handling DVS data, unlike the predominant use of
convolution-based models for RGB images. In this paper,
we propose the use of a deep-learning and differential-
equation hybrid method for such tasks, inspired by Neu-
ral Ordinary Differential Equations (NODE). NODE pio-
neered a novel machine learning approach where the data
is modeled as an ODE in latent space, which can in prin-
ciple be adjusted to process multiple asynchronous inputs.
[9]. Most recent works using machine-learning to model
DVS data integrate individual events to convert them into
formats that can be fed as input into existing models, but lose precise timing information. The work
of [1] studies the benefit of using precise temporal event data over aggregated event techniques. In
particular, the study states:

The use of information theory to characterize separability between classes for each temporal resolu-
tion shows that high temporal acquisition provides up to 70% more information than conventional
spikes generated from frame-based acquisition as used in standard artificial vision, thus drastically
increasing the separability between classes of objects.

This provides motivation to research methods that can directly handle asynchronous data.

Summary of contributions. This work develops a novel real-time online classification model
for event-based camera data streams. Moreover, it proposes INODE, an extension of the NODE
architecture, which can directly take as input the stream of a possibly-high-frequency signal. This
can be seen a continuous-time extension of Recurrent Neural Networks (RNNs). INODE is trained
to perform continuous-time event filtering in order to infer classification labels online, based on its
hidden state at a given moment. At test time, the classification prediction and the hidden state are
updated as each (asynchronous) camera event is received. The event polarity and spatial coordinates
are fed directly as inputs to the network without using convolutional layers or event integration.
Importantly, we remark that input data is not processed in any form beyond normalization.

Summary of experiments. We demonstrate that the proposed approach excels in sample efficiency
and real-time performance, significantly outperforming several LSTM architectures using short
sequencing during online inference at test time. Furthermore, our method works with raw, noisy
camera readings and is also invariant to the camera resolution used to capture the data.

2 Input-filtering Neural ODE

The proposed approach builds upon the architecture proposed in [25], with the difference that here
we do not focus on the improvement of training efficiency and use standard back-propagation through
time. We implement a batch Euler ODE solver so that our network can be dealt with as an RNN. This
allows for the state to be unmeasured (hidden), for instance like in LSTMs. The result is a recurrent
architecture with skip connections that can handle unevenly-spaced points in time. We also add a
decoder network as a classifier.

Input-filtering Neural ODE. Consider the constrained differential optimization problem:

min
θf ,θg∈Rm

∫ t1

t0

L(z(t), z̄(t)) dt,

s.t. h′(t) = f(h(t), u(t); θf ), z(t) = g(h(t); θg), h(t0) = h0,

(1)

where h(t) is the hidden state, u(t) is the input, z(t) is the predicted output, z̄(t) is the desired output,
the loss L is given, f and g are neural networks with a fixed architecture defined by, respectively, θf ,
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and θg which are parameters that have to be learned. The first two equality constraints in (1) define
an ODE. Problems of this form have been used to represent several inverse problems, for instance in
machine learning, estimation, filtering and optimal control [30, 17, 27]. Since this architecture can act
as a general filter for the input signal, u(t), we refer to it as the Input-filtering Neural ODE (INODE).
We consider this a general framework for handling event data in a machine-learning scenario.

Application to DVS cameras. We propose to use INODE to build a system that predicts (labels)
online by filtering a live-stream of DVS-camera events. The aim is to learn the ODE in problem (1),
given short excitation event sequences u(t). Ideally, this model should produce the fastest trajectory
from the initial state h0 to an appropriate (unknown) state h̄ such that z̄ = g(h̄), where g serves as a
classification layer and z̄ are the labels to be predicted. Hence, we fix the target to z̄(t) = z̄, ∀t.
Event inputs. Events are high-frequency signals, and solving a high-frequency ODE is difficult.
Event streams are also extremely dense: the time between events is, in general, very small (often
< 100µs). We propose the use of a sample-and-hold approach, where events are held constant for up
to a maximum delta-time dmax. In the rare case that no events occur after dmax, then we simply wait
for the next event and hold the previous result without running the forward pass.

Problem discretization. A neuromorphic dataset D is a collection e = {ei}Mi=0 of events ei =
(xi, yi, pi, ti), where M is the number of events considered for a given sample (typically on the
order of thousands), and labels z̄ ∈ {0, ...., C − 1} for C classes. A digit is represented by a
tuple (e, z̄) and the dataset by D = {(e, z̄)n}Nn=0, where N is the number of samples. Thus, the
integral in (1) is discretized for each sample using a subset of size S evaluation points [t1, ..., tS ] as:
L(e, z̄) = 1

S

∑S
i=1 L(z(ti), z̄), where L is the cross-entropy loss. For each evaluation point, a new

input event is used, i.e., u(ti) = (x(ti), y(ti), p(ti)). Finally, the sample loss is averaged over the
dataset LD = E(e,z̄) [L(e, z̄)] and used for optimization.

Time step normalization. To accurately use the time-steps dt, they can be normalized to values
smaller than one (timestamps are recorded in microseconds and thus quickly reach very large values).
At the same time, dt should not be very small to avoid optimization issues, such as vanishing
gradients. We compute dt from the raw time-steps and divide by the 98th quantile dq from the
empirical distribution of dt for each training dataset, pre-computed and fixed, with an upper threshold
at 1. The normalized step is dτ = dt/dq. The complete training procedure is summarised in
Algorithm 1 (Appendix A).

3 Experiments

We consider multiple classification tasks to validate our method, benchmarking against LSTM
variants. We always learn from short event subsequences (up to 100 events). Performance is evaluated
with the same number of events used during training. This allows for potential real-time classification
(when properly optimized), as inference time increases with number of events processed. We report
full Tables and Figures for the experiment in the Appendix.

Setup. We use the same configurations, architectures, and hyper-parameters for all of the datasets
and model variants. We train all models with different ρ = {1, 0.4, 0.2} levels, where ρ is the
fraction of train dataset used for training. For each sequence, we sample a random offset and relative
sub-sequence of length S � M . In all of the experiments we set S = 100. We then use such
sub-sequence as input u(t) for the model with batch size Bρ = ρBρ=1. At test time, we consider
different scenarios: a standard case, where the models are evaluated with S = 100 on the test
set, and more challenging ones, in which they are evaluated with short sub-sequences in the range
S = {10, 20, 30, ..., 100}.
Baselines. We first compare INODE against LSTM and bidirectional LSTM (bi-LSTM). The LSTMs
and bi-LSTMs receive the event time-step as additional input. We consider three bi-LSTM models
with hidden states of dimension {36, 72, 128}. The bi-LSTM72 has approximately the same capacity
of INODE, while bi-LSTM128 is 3x larger. We also consider a variant of LSTM, the PhasedLSTM
[22] without coordinate-grid embedding. This model explicitly handles asynchronous data learning
an additional phase gate. Such approach is – according to the authors – fruitful for long sequences
(>1000 steps), in which the phase gate can exploit periodic mechanism in the data. Given our use case,
short sequences of events (<100), we do not expect improvements over a standard LSTM. To the best
of our knowledge, this is the only known method which – like ours – inherently handles asynchronous
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timing within the model and does not need to learn an external transition model. Unfortunately,
our initial results with standard PhasedLSTM were rather poor. However, combining phased and
bidirectional LSTM seemed promising. We denote this as P-bi-LSTM.

Datasets. We consider three neuromorphic datasets:

i) NMNIST The NMNIST dataset [23] is a neuromorphic version of MNIST. It is an artificial dataset,
generated by moving a DVS sensor in front of an LCD monitor displaying static images. It consists
of 60k training samples and 10k test samples, for 10 different digits on a grid of 34 × 34 pixels. We
consider only the first 2,000 (of potentially up to 6,000) events for each sequence. We do not stabilize
the events spatially nor attempt to remove noisy events, which are options available in the dataset.

ii) ASL (12-16k) The ASL-DVS dataset, is a neuromorphic dataset, obtained for a stream of real-
world events [33]. It consists of around 100k samples for 24 different letters from the American Sign
Language, with spatial resolution 180 × 240. Its sequences range from 1-500k events, with length
distribution peaking in the 12-16k range. To avoid inconsistencies, we consider a subset containing
only samples with a number of events between 12k and 16k. The resulting dataset contains 12,275
training samples plus 1,364 test samples.

iii) NCALTECH The NCALTECH dataset [23] is the neuromorphic version of CALTECH101,
produced in the same fashion as NMNIST. It consists of 100 heavily unbalanced classes of objects
plus a background, with spatial resolution 172 × 232. The dataset contains 6,634 training samples
and 1,608 test samples, after removing the background images. As with NMNIST, we again avoid
stabilizing/denoising the images.

Solver. We train each model using ADAM for 300 epochs, with S = 100 and learning rate of 1e-3.
The batch size Bρ=1 is 1000 for NMNIST, and 100 for the other datasets. We consider a simple
multi-layer perceptron for f : f(x, u) = FC3(σ(FC2(σ({FC1(x),FCu(u)})), where {·, ·} denotes
the concatenation operation, FC is a fully-connected layer, and σ = tanh is the activation.

Table 1: Classification accuracy on test sets
for different datasets between INODE and
comparable baselines. More baselines and
results in Appendix C.

MODEL DATASETS

NMNIST ASL NCALTECH

INODE30 0.89 0.79 0.34
BI-LSTM72 0.84 0.61 0.30
LSTM72 0.81 0.35 0.31

Results. When testing the models, we vary both the size
of the training dataset and the number of test events used
for the classification (10 ≤ S ≤ 100). The former is used
to show INODE’s learning efficiency when using a small
amount of training data, while the latter demonstrates IN-
ODE’s real-time scenario usability. Tables 4, 5, and 6 in
Appendix C report accuracies for each of our datasets. The
LSTM with 164 states outperforms the proposed architec-
ture on NMNIST, see Table 6. On the ASL dataset (Table
5) our approach consistently outperforms all of the unidi-
rectional baselines with a margin of 20%. We believe this
is important since, among the considered datasets, ASL
contains by far the most realistic data, being the only one not generated from static images. For
NCALTECH, our approach is either on par or better than the LSTM when a small percentage of event
is used (Table 4). For the bidirectional baselines, with approximately the same capacity (INODE30
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Figure 3: Summary of results. Train/test losses and classification performance for INODE and multiple LSTM
baselines, with increasing number of inference events per digit from 10 to 100. The three images for each dataset
sub-figure correspond to training-set fraction of 20% (left), 40% (center), and 100% (right).
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and bi-LSTM72), INODE performs better then the bi-LSTMs on all of the datasets. Increasing the
baseline capacity (bi-LSTM128), INODE performs better on NCALTECH and ASL, while slightly
losing its edge to the bi-LSTM128 on NMNIST. Decreasing the training-set size has essentially
no impact on NMNIST for all models – confirmation of a relatively simple dataset. One can also
notice that, save a couple of exceptions on NMNIST, INODE outperforms the bidirectional methods
regardless of number of input events. These are as low as S = 10, and, in principle, even S = 1
is possible without modifying our approach. Interestingly, with a mere 10 events, the model can
correctly classify NMNIST digits about half of the time. As such, we demonstrate INODE’s ability to
extract information in the case of exceptional sparsity and data unavailability. This could be extremely
important in scenarios such as collision avoidance and human-machine interaction, where safety is a
paramount requisite. Finally, Figure 4, 5 and more comprehensive figures found in the Appendix
further illustrate how INODE trains faster using fewer samples and events, especially on the ASL
dataset.

4 Conclusion

This paper presents a novel approach for performing machine learning from event-camera streams.
The proposed INODE model is devised to handle high-frequency event data, inherently making use of
the precise timing information of each individual event, and does not require processing the raw data
into different formats. INODE excels in the most realistic scenarios, when little training data and few
events are available. This makes it suitable for real-time, low-computation settings where decisions
must be taken with only few event such as collision avoidance and high-speed object recognition.
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Appendix

A Related Works

We review previous works related to our method, first describing alternative approaches to process events and
discussing their relative advantages, then briefly introducing NODE methods.

Learning from event data. Event data from DVS cameras, being asynchronously streamed per sensor array
pixel, requires careful processing to be compatible with traditional machine learning models. Methods for
handling event data can be, in general, divided into grouped-event-based and per-event-based. The former
employ a scheme to integrate multiple events into a single data structure that can be handled by spatially-based
(e.g., convolutional) models, while the latter process the data stream on an event-by-event basis. Figure 1
illustrates the main differences between the reviewed works and the proposed approach.

Grouped-event methods. One of the more evident strategies in this category is to integrate time windows of
data into grayscale intensity images, then apply existing computer vision techniques on these reconstructions.
This is used, for example, in optical flow estimation [3], SLAM [16] and face recognition [4]. Such a process
requires various filtering, tracking, and/or inertial measurement integration to properly compute frame offsets.
This integration method itself is also the subject of [26], that uses RNNs to obtain usable intensity video from
events. The main advantage of these methods is the possibility of directly plugging-in existing algorithms on top
of grayscale images. This comes at the cost of including pipeline buffering (latency) due to event collection over
some time window, loosing the timestamp information, and potentially needing external IMU integration for
long-term odometry.

Many techniques avoid the reconstruction of a full intensity image over a long buffer, but still rely on machine
learning methods made for image data, such as Convolutional Neural Networks [12, 18], and thus require
formatting events into a sparse 2D grid structure. This has been applied to optical flow estimation [34, 8], object
detection [7, 8], and depth estimation [32]. Various aggregation schemes can be used, such as time-window
binning or voxel volumes. Different grid sampling schemes are proposed in [13] and [8]. Advantages of these
methods include compatibility with image-based learning algorithms, but disadvantages include, once again,
inefficiency over sparse grids, loss of precise event timings, and a delay required to collect frames over time
windows.

A distinct approach, evaluated on image classification, samples events until they form a connected graph, with a
combination of spatial and temporal distances as a measure of edge length [33]. A neural network able to work
on graph data [5] is then used to process the inputs. The use of spatial graph convolutions addresses the issue of
sparsity found in grid-based approaches but still requires to collect data over a time window.

Per-event methods. Since event-cameras are considered a neuromorphic system, researchers theorized they
would go hand-in-hand with a more biologically-grounded model for processing. Spiking Neural Networks
(SNNs) [21] are a class of neural networks based on human-vision perception principles, asynchronously
activating specific neurons. This makes them a theoretical candidate for processing DVS events, one at a
time [2, 24]. In their original form, SNNs are non-differentiable and thus incompatible with backpropagation-
based training; therefore, most SNN methods require either proxy-based procedures [31] or an approximation
of the original SNN formulation [19]. Nevertheless, these models tend to have lower performance than more
modern methods.

Another clear choice for event-by-event classification are RNNs [11], neural networks specifically designed to
handle sequential data. Such models, however, usually assume evenly-spaced series inputs, therefore neglecting
one of the main features of DVS sensors. To address this, an extension of the LSTM [15] architecture, named
PhasedLSTM [22], was devised. This model added time gates to the previous and current intermediate hidden
states. These gates open cyclically, modulated by the current input timestamp. PhasedLSTM was tested on
event classification, using an embedding for the event coordinates, showing an improvement over LSTM for
performance on the same task. Recent approaches process events with recursive strategies [29].

Neural ODEs. NODEs are a recent methodology for modeling data as a dynamical system, governed by a neural
network and solved using traditional ODE solvers [9]. Inference is performed using gradient-based optimization
through several time steps of the discretized ODE, typically using explicit time-stepping schemes [6]. To reduce
memory requirements, researchers have proposed using the adjoint method [9, 14]. NODEs have been applied to
the time-series domain [28], by employing an LSTM to preprocess irregularly-spaced samples before feeding it
into a NODE solver. This adds flexibility to the original formulation, at the cost of additional parameters and
increased processing time. Moreover, there is high risk that the conditioning network could perform most of the
inference and therefore the NODE results only in an integration task. In this work, we instead consider ODEs
with an input connection, similarly to the SNODE architecture in [25].
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B Algorithm

Algorithm 1 INODE

Inputs: e, dmax, dq , S �M
repeat

Sample {ui, ti}s+Si=s from e
for i = 0 to S − 1 do

dτ = min((ti+1 − ti)/dq, dmax)
h(ti+i) = h(ti) + dτ f(h(ti), u(ti))
z(ti+1) = g(h(ti+1))
Li+1 = L(z(ti+1), z̄)

end for
L = 1

S

∑S
i=1 Li

θ ← ∇θL
until Convergence

C Tables and Figures

INODE30 bi-LSTM36 bi-LSTM72 bi-LSTM128

0 50 100
epochs

0

1

2

3

Lo
ss

25 50 75 100
n events

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

0 50 100
epochs

25 50 75 100
n events

0 50 100
epochs

25 50 75 100
n events

(a) MNIST (100 epochs)

0 50 100
epochs

0

1

2

3

Lo
ss

25 50 75 100
n events

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

0 50 100
epochs

25 50 75 100
n events

0 50 100
epochs

25 50 75 100
n events

(b) ASL (100 epochs)

0 50 100
epochs

3.0

3.5

4.0

4.5

Lo
ss

25 50 75 100
n events

0.0

0.1

0.2

0.3

0.4

A
cc

u
ra

cy
0 50 100

epochs

25 50 75 100
n events

0 50 100
epochs

25 50 75 100
n events

(c) NCALTECH (100 epochs)

0 100 200 300
epochs

0

1

2

3

Lo
ss

25 50 75 100
n events

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

0 100 200 300
epochs

25 50 75 100
n events

0 100 200 300
epochs

25 50 75 100
n events

(d) MNIST (300 epochs)

0 100 200 300
epochs

0

1

2

3

Lo
ss

25 50 75 100
n events

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

0 100 200 300
epochs

25 50 75 100
n events

0 100 200 300
epochs

25 50 75 100
n events

(e) ASL (300 epochs)

0 100 200 300
epochs

3.0

3.5

4.0

4.5

Lo
ss

25 50 75 100
n events

0.0

0.1

0.2

0.3

0.4

A
cc

u
ra

cy

0 100 200 300
epochs

25 50 75 100
n events

0 100 200 300
epochs

25 50 75 100
n events

(f) NCALTECH (300 epochs)

Figure 4: Summary of results. Train/test losses and classification performance for INODE and multiple bi-LSTM
baselines, with increasing number of inference events per digit from 10 to 100. The three images for each dataset
sub-figure correspond to training-set fraction of 20% (left), 40% (center), and 100% (right).
The number of states, parameters, and input features for each model are summarized in Table 2.
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Figure 5: Summary of results. Train/test losses and classification performance for INODE and multiple LSTM
baselines, with increasing number of inference events per digit from 10 to 100. The three images for each dataset
sub-figure correspond to training-set fraction of 20% (left), 40% (center), and 100% (right).

Table 2: Models setup and complexity

MODEL N STATES N PARAMS INPUT

INODE30 (OURS) 30 42,161 (x, y, p)

LSTM164 164 111,520 (x, y, p, t)
P-LSTM164 164 111,192 (x, y, p)
LSTM104 104 45,760 (x, y, p, t)
P-LSTM104 104 45,552 (x, y, p)
LSTM72 72 22,464 (x, y, p, t)
P-LSTM72 72 22,320 (x, y, p)

BI-LSTM128 128 137,216 (x, y, p, t)
P-BI-LSTM128 128 136,704 (x, y, p)
BI-LSTM72 72 44,928 (x, y, p, t)
P-BI-LSTM72 72 44,640 (x, y, p)
BI-LSTM36 36 12,096 (x, y, p, t)
P-BI-LSTM36 36 11,952 (x, y, p)

Table 3: f parameterization for INODE and classifier.

FC1 FCu FC2 FC3 FCc

INPUT DIM 30 3(+1) 256 128 30
OUTPUT DIM 128 128 128 30 N CLASSES
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Table 4: Classification accuracy on NMNIST test set increasing the number of events (10 classes).

MODEL DATASET % N EVENTS TEST

10 20 30 40 100

INODE30 100 0.48 0.66 0.75 0.80 0.89
LSTM164 100 0.63 0.80 0.86 0.89 0.94
LSTM104 100 0.55 0.71 0.78 0.81 0.88
P-LSTM104 100 0.27 0.29 0.27 0.24 0.18
LSTM72 100 0.46 0.61 0.68 0.73 0.81
BI-LSTM128 100 0.39 0.66 0.77 0.84 0.93
P-BI-LSTM128 100 0.28 0.34 0.39 0.44 0.55
BI-LSTM72 100 0.31 0.50 0.62 0.70 0.84
P-BI-LSTM72 100 0.26 0.32 0.36 0.40 0.51
BI-LSTM36 100 0.22 0.34 0.43 0.48 0.61
P-BI-LSTM36 100 0.24 0.30 0.32 0.35 0.44

INODE30 40 0.46 0.65 0.73 0.79 0.88
LSTM164 40 0.61 0.79 0.85 0.88 0.93
LSTM104 40 0.46 0.62 0.69 0.73 0.80
P-LSTM104 40 0.24 0.26 0.24 0.21 0.15
LSTM72 40 0.44 0.59 0.65 0.70 0.78
BI-LSTM128 40 0.30 0.53 0.68 0.77 0.89
P-BI-LSTM128 40 0.27 0.33 0.37 0.41 0.51
BI-LSTM72 40 0.27 0.39 0.49 0.56 0.72
P-BI-LSTM72 40 0.25 0.30 0.34 0.37 0.45
BI-LSTM36 40 0.25 0.36 0.42 0.47 0.58
P-BI-LSTM36 40 0.23 0.27 0.30 0.32 0.40

INODE30 20 0.46 0.63 0.73 0.78 0.87
LSTM164 20 0.46 0.62 0.68 0.72 0.79
LSTM104 20 0.29 0.36 0.41 0.43 0.49
P-LSTM104 20 0.22 0.25 0.23 0.20 0.17
LSTM72 20 0.26 0.33 0.36 0.39 0.42
BI-LSTM128 20 0.42 0.64 0.75 0.80 0.90
P-BI-LSTM128 20 0.25 0.30 0.34 0.37 0.47
BI-LSTM72 20 0.30 0.47 0.58 0.64 0.77
P-BI-LSTM72 20 0.23 0.28 0.30 0.33 0.41
BI-LSTM36 20 0.21 0.30 0.36 0.40 0.49
P-BI-LSTM36 20 0.21 0.24 0.26 0.28 0.34

RANDOM 0.10 0.10 0.10 0.10 0.10
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Table 5: Classification accuracy on ASL test set increasing the number of events (24 classes).

MODEL DATASET % N EVENTS TEST

10 20 30 40 100

INODE30 100 0.37 0.51 0.61 0.67 0.79
LSTM164 100 0.35 0.44 0.51 0.55 0.59
P-LSTM164 100 0.22 0.25 0.25 0.24 0.21
LSTM104 100 0.27 0.31 0.32 0.34 0.37
P-LSTM104 100 0.21 0.21 0.23 0.22 0.20
LSTM72 100 0.27 0.30 0.33 0.32 0.35
P-LSTM72 100 0.24 0.26 0.27 0.28 0.24
BI-LSTM128 100 0.18 0.26 0.35 0.40 0.54
P-BI-LSTM128 100 0.28 0.33 0.36 0.41 0.47
BI-LSTM72 100 0.25 0.36 0.43 0.49 0.61
P-BI-LSTM72 100 0.29 0.32 0.36 0.38 0.45
BI-LSTM36 100 0.17 0.25 0.29 0.32 0.38
P-BI-LSTM36 100 0.23 0.27 0.30 0.31 0.36

INODE30 40 0.36 0.50 0.58 0.64 0.69
LSTM164 40 0.32 0.39 0.44 0.47 0.46
P-LSTM164 40 0.19 0.19 0.19 0.19 0.18
LSTM104 40 0.28 0.32 0.34 0.36 0.39
P-LSTM104 40 0.18 0.19 0.20 0.19 0.21
LSTM72 40 0.26 0.29 0.29 0.30 0.31
P-LSTM72 40 0.24 0.26 0.25 0.27 0.25
BI-LSTM128 40 0.29 0.40 0.48 0.55 0.65
P-BI-LSTM128 40 0.27 0.32 0.35 0.37 0.41
BI-LSTM72 40 0.23 0.26 0.31 0.35 0.40
P-BI-LSTM72 40 0.23 0.28 0.30 0.33 0.36
BI-LSTM36 40 0.19 0.22 0.24 0.28 0.34
P-BI-LSTM36 40 0.23 0.27 0.30 0.31 0.35

INODE30 20 0.32 0.47 0.55 0.60 0.71
LSTM164 20 0.25 0.29 0.31 0.31 0.31
P-LSTM164 20 0.17 0.17 0.16 0.16 0.15
LSTM104 20 0.26 0.29 0.31 0.32 0.33
P-LSTM104 20 0.19 0.18 0.19 0.19 0.17
LSTM72 20 0.26 0.32 0.34 0.33 0.35
P-LSTM72 20 0.19 0.19 0.16 0.17 0.18
BI-LSTM128 20 0.28 0.37 0.43 0.48 0.55
P-BI-LSTM128 20 0.25 0.28 0.30 0.34 0.37
BI-LSTM72 20 0.20 0.26 0.32 0.34 0.39
P-BI-LSTM72 20 0.24 0.28 0.30 0.30 0.35
BI-LSTM36 20 0.21 0.26 0.28 0.30 0.33
P-BI-LSTM36 20 0.23 0.26 0.27 0.28 0.31

RANDOM 0.04 0.04 0.04 0.04 0.04

11



Table 6: Classification accuracy on NCALTECH test set increasing the number of events (100 classes).

MODEL DATASET % N EVENTS TEST

10 20 30 40 100

INODE30 100 0.22 0.26 0.29 0.30 0.34
LSTM164 100 0.25 0.29 0.32 0.32 0.36
P-LSTM164 100 0.22 0.24 0.24 0.24 0.21
LSTM104 100 0.24 0.27 0.28 0.29 0.31
P-LSTM104 100 0.23 0.25 0.25 0.24 0.21
LSTM72 100 0.24 0.27 0.29 0.30 0.31
P-LSTM72 100 0.23 0.24 0.23 0.24 0.24
BI-LSTM128 100 0.16 0.24 0.28 0.31 0.35
P-BI-LSTM128 100 0.21 0.24 0.26 0.26 0.28
BI-LSTM72 100 0.16 0.24 0.28 0.29 0.30
P-BI-LSTM72 100 0.21 0.24 0.25 0.26 0.28
BI-LSTM36 100 0.12 0.21 0.24 0.27 0.28
P-BI-LSTM36 100 0.21 0.23 0.24 0.25 0.26

INODE30 40 0.23 0.27 0.29 0.31 0.34
LSTM164 40 0.25 0.27 0.30 0.31 0.33
P-LSTM164 40 0.22 0.23 0.22 0.22 0.20
LSTM104 40 0.26 0.28 0.29 0.30 0.30
P-LSTM104 40 0.21 0.22 0.22 0.22 0.22
LSTM72 40 0.25 0.27 0.28 0.29 0.31
P-LSTM72 40 0.20 0.21 0.20 0.21 0.20
BI-LSTM128 40 0.17 0.22 0.24 0.25 0.29
P-BI-LSTM128 40 0.22 0.24 0.26 0.26 0.28
BI-LSTM72 40 0.20 0.24 0.25 0.27 0.28
P-BI-LSTM72 40 0.21 0.23 0.24 0.25 0.27
BI-LSTM36 40 0.18 0.21 0.23 0.24 0.25
P-BI-LSTM36 40 0.20 0.21 0.22 0.23 0.25

INODE30 20 0.22 0.25 0.26 0.28 0.30
LSTM164 20 0.24 0.25 0.26 0.27 0.30
P-LSTM164 20 0.21 0.22 0.22 0.22 0.20
LSTM104 20 0.22 0.24 0.25 0.25 0.27
P-LSTM104 20 0.20 0.23 0.22 0.23 0.21
LSTM72 20 0.23 0.25 0.27 0.27 0.28
P-LSTM72 20 0.19 0.20 0.20 0.20 0.20
BI-LSTM128 20 0.19 0.23 0.25 0.26 0.28
P-BI-LSTM128 20 0.21 0.23 0.25 0.26 0.26
BI-LSTM72 20 0.11 0.15 0.20 0.22 0.25
P-BI-LSTM72 20 0.20 0.21 0.23 0.24 0.25
BI-LSTM36 20 0.17 0.18 0.21 0.20 0.22
P-BI-LSTM36 20 0.20 0.20 0.23 0.23 0.24

RANDOM 0.01 0.01 0.01 0.01 0.01
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