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Abstract

We propose a data-driven, hierarchical state-space model that provides a lower-
dimensional, coarse-grained dynamical description of a high-dimensional, fine-
grained, multiscale dynamical system. Given the expense associated with the
generation of training data by physical simulators (e.g. molecular dynamics),
we infuse domain knowledge with the introduction of an intermediate layer of
physics-motivated, latent variables. We combine these with a flexible prior on
the complex plane that facilitates the discovery of the latent, slow processes and
ensures the long-term stability of the learned dynamics. In contrast to existing
schemes, the proposed model does not require the a priori definition of projection
operators from the fine-grained description and addresses simultaneously the tasks
of dimensionality reduction and model estimation. We demonstrate its efficacy and
accuracy in multiscale physical systems of particle dynamics where probabilistic,
long-term predictions of phenomena not contained in the training data are produced.

1 Introduction

The present paper is concerned with the discovery of dynamic, coarse-grained models from fine-scale
simulation data that provide insight into the latent, slow processes and enable multiscale modeling.
Many problems in science and engineering are modeled by high-dimensional systems of deterministic
or stochastic, (non)linear, microscopic evolution laws as in the atomistic simulation of materials [1],
in complex flows [2] or in agent-based models [3]. Their solution is generally dominated by the
smallest time scale involved even though the outputs of interest might pertain to time scales that
are greater by several orders of magnitude [4]. The disparity of time-scales in combination with
the high-dimensionality has motivated the development of coarse-grained descriptions which are
lower-dimensional but are nevertheless predictive of the fine-grained system’s evolution.

While generic state-space models for analyzing time-series data such as [5, 6, 7] can be employed
in such problems, they struggle in the small data regime, the solutions obtained are not necessarily
interpretable and can fail in out-of-sample predictions e.g. when new intial conditions are employed.
In this paper we propose a novel physics-aware, probabilistic, coarse-graining framework with guaran-
teed stability that combines recent advances in statistical learning with a hierarchical architecture that
promotes the discovery of interpretable, low-dimensional representations. We employ a generative
state-space model with two layers of latent variables. The first describes the latent dynamics using a
novel prior on the complex plane that guarantees stability and yields a clear distinction between fast
and slow processes, the latter being responsible for the system’s long-term evolution. The second
layer involves physically-motivated latent variables which infuse inductive bias, enable connections
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with the very high-dimensional observables and reduce the data requirements for training. The proba-
bilistic formulation adopted enables the quantification of a crucial, and often neglected, component in
any model-order reduction process, i.e. the predictive uncertainty due to information loss.

This work shares similarities with approaches that combine physical knowledge with statistical
learning. This includes methods based on dynamical invariants such as Hamiltonian [8, 9] and
Lagrangian Dynamics [10] as well as approaches that use physical laws as regularization terms or for
augmenting the loss function as in [11, 12, 13, 14]. In the context of molecular dynamics multiple
schemes for coarse-graining which also guarantee long-term stability have been proposed by [15,
16, 17]. Another line of work close to ours pertains to the use of Koopman-operator theory [18]
which attempts to identify appropriate transformations of the original coordinates that yield linear
dynamics [19]. We note that these approaches [12, 20, 21, 22] require additionally the specification
of an encoder i.e. a map from the original description to the reduced coordinates which we avoid in
the generative formulation adopted.

2 Physics-aware, Probabilistic Coarse-Graining

Given N high-dimensional observables {x(i)
0:T }Ni=1 over T time-steps with x ∈M ⊂ Rf (f >> 1)

generated by a computational physics simulator, we seek a lower-dimensional set of of collective
variables or latent generators zt and their associated dynamics. Because of the difficulties associated
with these tasks, we advocate the introduction of an intermediate layer of physically-motivated,
lower-dimensional variables Xt (e.g. density or velocity fields) as well as a slowness-promoting
prior for zt. Using Xt alone (without zt) would make it extremely difficult to enforce long-term
stability while achieving sufficient complexity in the learned dynamics [23, 20]. Furthermore and
even if the dynamics of xt are Markovian, this is not necessarily the case for the coarse-grainedXt

[24]. The latent variables zt therefore effectively correspond to a nonlinear coordinate transformation
that yields not only Markovian but also stable dynamics [21]. The general framework is summarized
in Figure 1.

Figure 1: Visual summary of proposed framework. The low-dimensional variables z act as generators
of an intermediate layer of latent, physically-motivated variablesX that are able to reconstruct the
high-dimensional system x.

2.1 Model Structure

Our model consists of three levels. At the first level reside the latent variables zt which are connected
with Xt in the second layer through a probabilistic map G. The physical variables Xt are finally
connected to the high-dimensional observables through another probabilistic map F . We parametrize
F ,G with deep neural networks and denote by θ1 and θ2 the corresponding parameters. In particular,
we postulate the following relations:

zt,j = zt−1,j exp(λj) + σjεt,j λj ∈ C, εt,j ∼ CN (0, 1), j = 1, 2, . . . , h (1)
Xt = G(zt,θ1) (2)
xt = F (Xt,θ2) (3)

We assume that the latent variables zt are complex-valued and a priori independent. We model
their dynamics with a discretized Ornstein-Uhlenbeck process on the complex plane with initial
conditions z0,j ∼ CN (0, σ2

0,j). The parameters associated with this level are denoted summarily by
θ0 = {σ2

0,j , σ
2
j , λj}hj=1.

2.1.1 Stable low-dimensional Dynamics

While the physical systems (e.g. molecular dynamics) of interest are highly non-stationary, they
generally converge to equilibrium in the long-term. We enforce long-term stability here by ensuring
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that the real-part of the λj’s in Equation (1) is negative, i.e.:

λj = <(λj) + i =(λj) with <(λj) < 0 (4)

which guarantees first and second-order stability i.e. the mean as well as the variance are bounded at
all time steps.

The transition density each process zt,j is given by:

p (zt,j | zt−1,j) = N

([
<(zt,j)
=(zt,j)

]
| µ = sj Rj

[
<(zt−1,j)
=(zt−1,j)

]
,Σ = I

σ2
j

2

)
(5)

with the orthogonal matrixRj depending on the imaginary part of λj :

Rj =

[
cos(=(λj)) − sin(=(λj))
sin(=(λj)) cos(=(λj))

]
(6)

The decay rate sj = exp(<(λj)) depends on the real part of λj , i.e. the closer to zero the latter is,
the "slower" the evolution of the corresponding process is. As in probabilistic Slow Feature Analysis
(SFA) [25, 26], we set σ2

j = 1− exp(2 <(λj)) = 1− s2j and σ2
0,j = 1. This implies that a priori the

latent dynamics are stationary and enables ranking of the slowness of each process j on the basis of
<(λj). Hence the only independent parameters are the λj . The imaginary part of λj can account for
periodic effects in the latent dynamics.

2.1.2 Probabilistic Generative Mapping

We employ fully probabilistic maps between the different layers which involve two conditional
densities based on Equations (2) and (3), i.e.:

p(xt |Xt,θ2) and p(Xt | zt,θ1) (7)

In contrast to the majority of physics-motivated papers [27, 28, 24], we note that the generative
structure adopted does not require the prescription of a restriction operator and the reduced variables
need not be selected a priori but rather are adapted to best reconstruct the observables.

The splitting of the generative mapping into two parts through the introduction of the intermediate
variables Xt has two main advantages. Firstly, X induce physical knowledge which reduces the
complexity of the maps involved and the number of parameters that need to be learned. Secondly and
onceX have been inferred, additional insight is gained and the results are more easily interpretable.

2.2 Inference and Learning

Given the probabilistic relations above, our goal is to identify the state variables X(1:n)
0:T , z

(1:n)
0:T as

well as all parameters θ of the model. We follow a hybrid Bayesian approach in which the posterior
of the state variables is approximated using structured Stochastic Variational Inference [29] and the
MAP point estimates for θ = {θ0,θ1,θ2} are obtained.

We approximate the true posterior with qφ(X
(1:n)
0:T , z

(1:n)
0:T ) =

∏N
i=1 qφ(z

(i)
0:T |X

(i)
0:T )qφ(X

(i)
0:T ) where

φ are the parameters involved. Both of the associated densities are modeled with Gaussians with
tridiagonal precision matrices [30, 31] in order to achieve scalability and the dependence between
the variables is captured using deep neural networks. The optimal parameter values are found by
maximizing the Evidence Lower Bound (ELBO)F(qφ(X(1:n)

0:T , z
(1:n)
0:T ),θ). We compute Monte Carlo

estimates of the gradient of the ELBO with respect to φ and θ with the help of the reparametrization
trick [32] and perform stochastic optimization with the help of the ADAM algorithm [33].

3 Particle Dynamics: Viscous Burgers’ Equation

The high-dimensional, fine-grained model considered consists of f identical particles which can
move in a bounded one-dimensional domain s ∈ [−1, 1] (under periodic boundary conditions).
The variables xt consist therefore of the coordinates of the particles at each time instant t and the
dimension of the system f is equal to the number of particles. We consider stochastic particle
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dynamics that correspond to a viscous-Burgers’-type behaviour [34, 35, 36]. The mapping F between
Xt and xt is fixed to a multinomial distribution whereasG is represented with a neural network.

We train the model on N = 64 time-series of the positions of f = 500× 103 particles over T = 20
time-steps. The physical latent variables are associated with the particle density which is represented
by discretizing the domain with 64 bins of equal size. Given the conservation of mass constraint, we
make use of real-valuedXt which are then transformed with the softmax function in order to yield
the particle density. Furthermore, we made use of h = 5 complex, latent processes zt.

In Figure 2 the learned values for the complex variables λj are plotted as well as the inferred and
predicted time-evolution of 2 associated processes zt,j on the complex plane. We note the clear
separation of time-scales in the first plot with three slow processes and two fast ones. This is also
evident in the indicative trajectories on the complex plane.
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Figure 2: Complex eigenvalues λ (left) and the time evolution of indicative slow (middle) and fast
(right) processes zt,j associated with them.

In Figure 3 we compare the true particle density with the one predicted by the trained reduced model.
We note that the latter is computed by reconstructing the xt futures. We observe that the model is
able to accurately track first-order statistics well into the future.
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Figure 3: Particle density: Inferred and predicted posterior mean (right) in comparison with the
ground truth (left). The red line divides inferred quantities from predicted ones.

A more detailed view of the predictive estimates with snapshots of the particle density at selected
time instances is presented in Figure 4. Here, not only the posterior mean but also the associated
uncertainty is displayed. The propagation and dissipation of the Burgers’ type shock front is clearly
captured. We want to emphasize the last Figure at t = 1000 when the steady state has been reached
which clearly shows that our model is capable of converging to stable equilibrium.
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Figure 4: Predicted particle density profiles at t = 40, 80, 120, 1000 (from left to right).

Finally, in Figure 5 the ability of the proposed model to accurately predict second-order statistics is
demonstrated.
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Figure 5: Two-point probability at t = 40, i.e. the probability of finding two particles simultaneously
in two bins (b1, b2): Reference (left), posterior mean (middle), posterior standard deviation (right).
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Broader Impact

This paper deals with computational and mathematical modeling of multiscale dynamical systems of
certain physical systems. Anticipated impact pertains primarily to the scientific community. Use in
real-life applications would require additional adjustments and expert input.
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