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Abstract

Model-free reinforcement learning (RL) is a powerful tool to learn a broad range of
robot skills and policies. However, a lack of policy interpretability can inhibit their
successful deployment in downstream applications, particularly when differences
in environmental conditions may result in unpredictable behaviour or generalisation
failures. As a result, there has been a growing emphasis in machine learning around
the inclusion of stronger inductive biases in models to improve generalisation. This
paper proposes an alternative strategy, inverse value estimation for interpretable
policy certificates (IV-Posterior), which seeks to identify the inductive biases
or idealised conditions of operation already held by pre-trained policies, and
then use this information to guide their deployment. IV-Posterior uses Masked
Autoregressive Flows to fit distributions over the set of conditions or environmental
parameters in which a policy is likely to be effective. This distribution can then be
used as a policy certificate in downstream applications. We illustrate the use of IV-
Posterior across a two environments, and show that substantial performance gains
can be obtained when policy selection incorporates knowledge of the inductive
biases that these policies hold.

1 Introduction

The proliferous development of methods that use reinforcement learning [3, 6, 4, 23] or other
strategies [24, 25, 11, 17] for learning robotic manipulation skills has enabled the creation of exciting
libraries of potentially viable policies to solve many common tasks. However, an extra layer of
interpretability to identify when such policies are likely to succeed is important for their successful
deployment, where uncertainty around environmental conditions and parameters may exist. This has
motivated the inclusion of strong inductive biases [10, 16, 13] or alternative forms of certification
over these models [24].

For example, consider an agent that wants to move an object as shown in Figure-1. The agent can
either push or pick and place, but choosing the appropriate strategy depends on the belief around
the object being manipulated: i.e pick and place is preferable for lighter objects whereas push is
better for bigger or heavier ones. We propose a methodology to enable interpretability of such expert
systems that choose from different pre-trained policies. Specifically, we focus on how to infer the
posterior probability (qφ) of the model parameters and initial conditions (s0, ξ) given evidence of
the rewards (r) from an arbitrarily chosen policy. These posteriors (qpushφ , qp&p

φ , etc.) may be used
to reason about viability and preferability or to counterfactually query environment settings and
conditions in which a policy may fail. We perform inverse value estimation for interpretable policy
certificates (IV-Posterior), to identify inductive biases or idealised conditions of operation already
held by pre-trained policies, and then use this information to guide their deployment.
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Figure 1: We can use the set of initial conditions and parameters learned using IV-Posterior to select
how to move an object based on the agent’s belief. It is better to pick and place small objects that
start at the left of the hole and push bigger or heavier objects.

2 Related Work

IV-Posterior fits posterior distributions over environment states or settings, conditioned on rewards.
This is similar to recent work that attempts to learn models of preconditions for planning [24, 25], by
generating samples of valid initial states for a given policy based on the context of a scene. Here,
samples are drawn from Gaussian Processes using level sets, so this approach is only applicable to
low-data regimes. The use of interpretable policy posteriors for task selection is also related to that of
initiation sets within the Options Framework [23, 14, 4] or abstractions in skill segmentation [18, 15].
However, these sets are usually discovered by learning classifiers that identify, from which observable
states, an option was successfully triggered, without any notion of uncertainty. In contrast, by fitting
a full posterior over environments, IV-Posterior also allows for counterfactual reasoning of the form,
’Where won’t this policy work?’.

The Sim2Real (S2R) community [26, 3, 1, 22, 6] has developed a number of methods to iteratively
learn a policy and fit distributions over environment parameters that can be used to model a particular
instance of a real world, often relying on Gaussianity [22, 6] or independence assumptions [22, 3]
regarding the underlying distribution. Of particular interest here is Likelihood Free Inference (LFI),
which is often used for simulation alignment to infer which simulation parameter generated a
particular real trajectory or observation [7, 8, 22, 12, 19, 21, 9]. Recent advances in LFI have shown
exciting results in the quality of the estimated posterior by relying on contrastive losses and sequential
estimation [8, 9]. Our work also relies on sequential LFI, but focuses on estimating a full posterior
distribution over initial conditions and environment parameters that might be partially observable
during deployment. Importantly, by doing so we allow for counterfactual reasoning and the use
of a broad range of easily computed metrics that incorporate uncertainty, like the proposed cross
entropy criterion for task selection in expert systems. Existing sample-based approaches producing
an intractable posterior do not directly allow this. By framing our problem within the LFI framework,
we take advantage of recent algorithmic developments in inference and density estimation.

3 IV-Posterior

IV-Posterior is a sequential a method to learn interpretable posteriors over the set of initial conditions
or environmental parameters in which a policy is likely to be effective.

3.1 Problem formulation

LetM define a Markov Decision Process, composed of states s ∈ S, actions a ∈ A and a reward
map R : S → R. The distribution of possible starting states is defined by s0 ∼ p(s0). Transitions
are determined by st+1 ∼ p(st+1|st,a; ξ), where ξ ∼ p(ξ) represent the parameters that affect the
dynamics of the environment (extrinsic/intrinsic parameters of the objects involved in the task). Note
that p(ξ) implicitly defines a class of objects from which particular object instances can be sampled
(i.e, objects with different shapes, masses, etc.). An agent can act on such environments according
to a policy distribution at ∼ πθ(at|st) parametrized by θ. Given a initial state s0, parameter
ξ and a policy θ, the agent will observe a trajectory after each interaction as p(τ|s0, ξ,θ) =∏T
t=0 p(st+1|st, πθ(at|st); ξ)p(s0). The observed rewards will thus be distributed according to

r ∼ p(R(τ)|s0, ξ,θ). Let qφ(s0, ξ|r) represent the variational approximator of the distribution over
initial states and parameters conditioned on the reward, i.e an autorregressive flow parametrised by φ.

2



Likelihood Posterior

rollout inference
θ

r

p(s0, ξ ) p ( | )r s0, ξ q (s0, ξ| )φ r

Prior

s0 × ξ s0 × ξ

*this papergiven

Figure 2: Sequential Estimation of the Conditional Posterior on
Environment Parameters.

Let β(s0, ξ) represent the be-
lief distribution over initial states
and parameters of the object the
agent wants to manipulate.

Given a policy, we wish to learn
under which initial conditions
and object instances the policy
is most likely to succeed. Es-
sentially, we are interested in
the posterior distribution over in-
stances of the environment that
will yield high reward.

φ∗(θ) = argmin
φ

E
s0, ξ∼p(s0, ξ)
r∼p(r|s0, ξ,θ)

[
− log qφ(s0, ξ|r)

]
(1)

We sequentially narrow down the posterior across k = 1 : N iterations and update the prior of the
next iteration with the conditioned posterior learned in the previous (Algorithm 1 / Figure 2). At each
iteration, we collect a datasetD(k) from b observed rollouts {(s0, ξ, r)(b)}Bb=1 and optimize Eq 1 to fit
the variational approximator of the posterior qφ. We used the Automatic Posterior Transformation [9]
algorithm to optimize Eq 1. The form of qφ should be flexible enough to capture complex correlations
across parameters (i.e. Figure 3-Right). Therefore assuming a diagonal covariance [22] might not be
enough. Masked Autoregressive Flow (MAF) [20] is a powerful density estimator method that excels
at modelling complex distributions, compared to other neural estimators, for inference [20, 9]. We
model our posterior distribution qφ using MAF.

3.2 Posterior for Task Selection

The learned posterior distribution qφ can also be used as a policy certificate in downstream applications
like task selection. Consider the case where the agent wants to manipulate an instance of an object
for which it has an initial belief β(s0, ξ) (Figure 1). Assume it already knows how to perform a task
in different ways θ(i) and that we learned their respective posteriors φ(i) as described in Section 3.1.

We can use φ to select which manipulation skill to use by computing the cross-entropy with respect
to the prior belief of the object:

i∗ = argmax
i

E
s0, ξ∼β(s0, ξ)

[
log qiφ(s0, ξ|r∗)

]
(2)

4 Experiments and Results

Our experiments aim to answer the following questions: (1) What is the quality of the learned
posterior in terms of interpretability? (2) How useful is the posterior over the environment parameters
for task selection?

We tested our method on two different environments: Kitchen2D-Pouring [24] with their predefined
dense reward of exp(2 ∗ (x ∗ 10− 9.5))− 1, where x is the proportion of liquid particles that fall
outside the target container. Here ξ = ∅, s0 = {grasp, rel.x, rel.y, dangle}, B = 300 and N = 10.
To evaluate the task selection downstream task, we used pre-trained policies for pickplace and
push using Hindsight Experience Replay (HER) [2]1. We created a new environment in OpenAI [5],
FetchBox, where the goal is to move a puck inside a box with a hole at the bottom (Figure 3-Left,
Bottom). The reward is 1 if the puck is inside the box at the end of the episode and 0 otherwise.
We chose s0 = {x, y} to be the initial position of the puck in the table, and the parameters of
the puck to be a combination of mass, width, height and friction (Table 1 shows the used ranges)
ξ ⊂ {mass, h, w, fr}, B = 500 and N = 15.

1https://github.com/TianhongDai/hindsight-experience-replay
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Figure 3-Left shows evolution of the marginals of the posterior at iterations k = 1, 7, 15 for φpickplace
and φpush using 5000 samples. We can observe that, even after 7 iterations, the posterior varies
significantly between both policies, especially with respect to ξmass and ξh. This indicates that
θpickplace works best for pucks with mid to low mass and θpush with short pucks due to the obstacle
in the box. We also present 1000 samples of the final posterior distribution for the Kitchen2D
environment in Figure 3-Right. We can observe a multimodal correlation between the relative
positions of the containers and where to grasp the source container, as well as the irrelevance of the
final angle of the cup for this task.
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Figure 3: (Left) Evolution of the marginals of the posterior at iterations k = 1, 7, 15 for pickplace
and push in the Fetch Box environment. (Right) Samples from the posterior at the last iteration
k = 10 in the Kitchen2D environment, visualized as pairwise relations between variables.

To test the usefulness of the posterior for task selection, we used the FetchBox environment to move
a puck into a box (Figure 3-Left). The goal is to select between θpush and θpickplace policies to
move a puck for which the agent has a belief β(s0, ξ). We sampled 1000 different beliefs of the
puck according to β(s0, ξ) = N ( ξ | µ, Σ ) with µ(j) = 0.5 and Σ(j,j) = 0.7 and off-diagonal
0. The belief is then rescaled to valid ranges according to Table 1. We use random selection as the
baseline and also show always pick or always push as guidelines. We show different combinations of
parameters with different dimensionalities on the x-axis and the average reward on the y-axis. All
configurations of methods and parameters were executed 1000 times. Figure 4 shows the performance
gained by using the learned posterior for task selection.
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Figure 4: Average rewards for different task selection methods over the initial position of the puck
on the table s0 and different subsets of parameters ξ for 1k randomly initialized object beliefs.

5 Conclusions

We presented IV-Posterior, a method to learn the inductive biases held by a policy, by fitting a
distribution over the set of conditions or environmental parameters in which a policy is likely to be
effective. We showed that this posterior provides an additional layer of interpretability to preexisting
policies, allows counterfactual reasoning, and facilitates task selection in expert systems without
requiring an intractable posterior to be computed using an expectation over samples. In future work
we plan to apply IV-Posterior to curriculum learning and domain adapation.
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Appendix

5.1 IV-PosteriorAlgorithm

Algorithm 1: IV-Posterior: Sequential Refinement of the Posterior
Input: p(s0, ξ), p(τ|s0, ξ,θ)
Output: φ∗

for k = 1 : N do
for b = 1 : B do

1 Sample s0, ξ ∼ p(s0, ξ)
2 Sample τ ∼ p(τ|s0, ξ,θ)
3 Compute r = R(τ)

4 Add to dataset D(k) = D(k−1) ∪ { (s0, ξ, r) }
5 Optimize L(φ(θ)) using D(k) (Eq 1)
6 Get r∗ from D(k)

7 Set p(s0, ξ) = qφ(s0, ξ|r∗)

5.2 Range of Parameter Priors used in the Experiments

In all experiments we used a uniform prior for p(s0, ξ) with the following parameter limits:

Description Notation Name in Sim. Range
ξmin ξ∗

Kitchen2D∗

Grasp ratio s0grasp grasp_ratio 0.0 1.0
Relative x s0rel.x rel_x -10.0 10.0
Relative y s0rel.y rel_y 1.0 10.0
Final angle s0dangle dangle 0.5 ∗ π π

Fetch OpenAI+

Mass ξmass body_mass 1.0 20.0
Size x ξw geom_size[0] 0.02 0.045
Size y ξh geom_size[1] 0.02 0.03
Tangential Friction ξfr0 geom_friction[0] 0.1 1.0
Torsional Friction ξfr1 geom_friction[1] 0.1 1.0
Rolling Friction ξfr2 geom_friction[2] 0.1 1.0

Table 1: Object Parameter Priors used in ∗Kitchen2D [24] (Box2D Engine) and +Fetch (Mujoco
Engine) environments (Name in Sim corresponds to the name of the parameter in each engine/wrapper.
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