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Abstract

The ability to generalize to unseen data is at the core of machine learning. A tradi-
tional view of generalization refers to unseen data from the same distribution. Dy-
namical systems challenge the conventional wisdom of generalization in learning
systems due to distribution shifts from non-stationarity and chaos. In this paper,
we investigate the generalization ability of dynamical systems in the forecasting
setting. Through systematic experiments, we show deep learning models fail to
generalize to shifted distributions in the data and parameter domains of dynamical
systems. We find a sharp contrast between the performance of deep learning mod-
els on interpolation (same distribution) and extrapolation (shifted distribution).
Our findings can help explain the inferior performance of deep learning models
compared to physics-based models on the COVID-19 forecasting task.

1 Introduction
Conventional wisdom on generalization refers to the model’s ability to adapt to unseen data. The
underlying assumption is that the data is drawn independently and identically distributed (i.i.d) from
the same distribution. Learning in dynamical systems violates such an assumption given its tempo-
ral dependency. Another challenge is the distribution shift: if the dynamics are non-stationary or
chaotic, the distribution is constantly changing. Therefore, learning dynamical systems provides a
natural venue for us to study generalization.

Dynamical systems [Day, 1994, Strogatz, 2018] are used to describe the evolution of phenomena
occurring in nature, in which an evolution equation dy/dt = fθ(y, t) models the time depen-
dence of the state y, where fθ is a non-linear operator parameterized by a set of parameters θ.
We consider the temporal dynamics forecasting problem of predicting an sequence of future states
yt+1, ...,yt+q ∈ Rd given an sequence of historic states yt−k, ...,yt ∈ Rd, where d is the feature di-
mension. We aim to learn a function h ∈ H that h(yt−k, ...,yt) = yt+1, ...,yt+q . Two distribution
shift scenarios occur: non-stationary dynamics and dynamics changing with different parameters.

A plethora of work is devoted to learning dynamical systems. When fθ is known, numerical methods
are most commonly used for estimating θ [Houska et al., 2012]. When fθ is unknown, data-driven
methods, such as deep sequence learning models [Flunkert et al., 2017, Rangapuram et al., 2018,
Benidis et al., 2020, Sezer et al., 2019], including sequence to sequence models and Transformer
[Vaswani et al., 2017, Wu et al., 2020, Li et al., 2020], have demonstrated success learning dy-
namical systems. Fully connected (FC) neural networks can also be used autoregressively to
produce multiple time-step forecasts. Physics-informed models [Raissi and Karniadakis, 2018,
Al-Aradi et al., 2018, Sirignano and Spiliopoulos, 2018] directly learn the solution of differential
equations with neural networks given coordinates and time as input, which cannot be used for fore-
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casting since the future time would always lie outside of the training domain and neural networks
are unreliable on unseen domain. [Chen et al., 2018, Wang et al., 2020, Ayed et al., 2019] have de-
veloped deep learning models integrated with differential equations, while making the strong as-
sumption that the training and test data have the same domain.

Deep neural networks often struggle with distributional shifts [Kouw and Loog, 2018,
Amodei et al., 2019] that naturally occur in learning dynamical systems. In forecasting, the
data in the future lies outside the training domain, and requires methods to extrapolate to the unseen
domain. This is in contrast to classical machine learning theory, where generalization refers to model
adapting to unseen data drawn from the same distribution [Hastie et al., 2009, Poggio et al., 2012].
Learning dynamic systems requires the model to generalize to unseen data with shifted distributions
in both the data and parameter domains.

In this work, we experimentally explore the two cases, distribution shift in the data and parameter
domains, where four widely-used deep sequence learning models fail to learn and predict the correct
dynamics. We show in a synthetic experiment that these models cannot handle a small vertical
distribution shift when forecasting stationary Sine waves. We also study the task of forecasting three
other non-linear dynamics: the Lotka-Volterra, FitzHugh–Nagumo and SEIR equations, and show
that these models have poor generalization to the unseen parameter domain of dynamical systems.

2 Generalization in Learning Dynamical Systems
2.1 Dynamical Systems

Lotka-Volterra (LV) system of equations (2.1) describe the dynamics of biological systems in
which predators and preys interact, where d denotes the number of species interacting and pi denotes
the population size of species i at time step t. The unknown parameters ri ≥ 0, ki ≥ 0 and Aij

denote the intrinsic growth rate of species i, the carrying capacity of species iwhen the other species
are absent, and the interspecies competition between two different species, respectively.

FitzHugh–Nagumo (FHN) [FitzHugh, 1961] and, independently, [Nagumo et al., 1962] derived
the equations (2.2) to qualitatively describe the behaviour of spike potentials in the giant axon of
squid neurons. The system describes the reciprocal dependencies of the voltage x across an axon
membrane and a recovery variable y summarizing outward currents. The unknown parameters a, b,
and c are dimensionless and positive, and c determines how fast y changes relative to x.

SEIR system of equations (2.3) models the spread of infectious diseases Tillett1992Dynamics. It
has four compartments: Susceptible (S) denotes those who potentially have the disease, Exposed (E)
models the incubation period, Infected (I) denotes the infectious who currently have the disease, and
Removed/Recovered (R) denotes those who have recovered from the disease or have died. The total
population N is assumed to be constant and the sum of these four states. The unknown parameters
β, σ and γ denote the transmission, incubation, and recovery rates, respectively.

dpi
dt

=ripi

(
1−

∑d
j=1Aijpj

ki

)
,

i =1, 2, . . . , d. (2.1)


dx

dt
= c(x+ y − x3

3
),

dy

dt
= −1

c
(x+ by − a).

(2.2)



dS/dt = −βSI/N,
dE/dt = βSI/N − σE,
dI/dt = σE − γI,
dR/dt = γI,

N = S + E + I +R.

(2.3)

2.2 Interpolation vs. Extrapolation

Suppose pS is the training data distribution and pT is the test data distribution. Let H be a hy-
pothesis class, and we aim to learn a function h ∈ H that h(yt−k, ...,yt) = yt+1, ...,yt+q ,
where yi ∈ Rd. Let l : (Rk×d × Rq×d) × H be a loss function. The empirical risk is
L̂(h) = 1

n

∑n
i=1 l((x

(i), z(i)), h), where (x(i), z(i)) ∼ pS is the ith of n training samples. The
test error is given as L(h) = E(x,z)∼pT [l((x, z), h)]. Both x(i) and z(i) are sequences of states
in our setting. Small L̂(h) − L(h) usually indicates good generalization. Apart from pS and pT ,
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Figure 1: Seq2Seq predictions on an interpolation (left) and an
extrapolation (right) test samples of Sine dynamics, the vertical
black line in the plots separates the input and forecasting period.

RMSE Inter Extra

Seq2Seq 0.012 1.242

Auto-FC 0.009 1.554

Transformer 0.016 1.088

NeuralODE 0.012 1.214

Table 1: RMSEs of the interpo-
lation and extrapolation tasks of
Sine dynamics.

we also define the parameter distributions of training and test samples as θS and θT , where the
parameter here refers to the parameters and the initial values of dynamical systems.

We define two types of interpolation and extrapolation tasks. Regarding the data domain, we define
a task as an interpolation task when the data domain of the test data is a subset of the domain of the
training data, i.e., Dom(pT ) ⊆ Dom(pS), and then extrapolation is occurs Dom(pT ) 6⊆ Dom(pS).
Regarding the system parameter domain, an interpolation task indicates that Dom(θT ) ⊆ Dom(θS),
and an extrapolation task indicates that Dom(θT ) 6⊆ Dom(θS).

2.3 Generalization in dynamical systems: unseen data in the different data domain

Through a simple experiment on learning the Sine curves, we show deep sequence models have poor
generalization on extrapolation tasks regarding the data domain, i.e. Dom(pT ) 6⊆ Dom(pS). We
generate 2k Sine samples of length 60 with different frequencies and phases, and randomly split them
into training, validation and interpolation-test sets. The extrapolation-test set is the interpolation-
test set shifted up by 1. We investigate four models, including Seq2Seq (sequence to sequence
with LSTMs), Transformer, FC (autoregressive fully connected neural nets) and NeuralODE. All
models are trained to make 30 steps ahead prediction given the previous 30 steps. See the Sine
subsection of Appendix A for details.

Table 1 shows that all models have substantially larger errors on the extrapolation test set. Figure 1
shows Seq2Seq predictions on an interpolation (left) and an extrapolation (right) test samples. We
can see that Seq2Seq makes accurate predictions on the interpolation-test sample, while it fails to
generalize when the same sample is shifted up only by 1.

2.4 Generalization in dynamical systems: unseen data with different system parameters

Even when Dom(pT ) ⊆ Dom(pS), deep sequence models may fail to predict correct dynamics if
there is a distributional shift in the parameter domain, i.e., Dom(θT ) 6⊆ Dom(θS). For each of the
three dynamics in section 2.1, we generate 6k synthetic time series samples with different system
parameters and initial values. The training/validation/interpolation-test sets for each dataset have the
same range of system parameters while the extrapolation-test set contains samples from a different
range. Table 2 shows the parameter distribution of test sets. For each dynamics, we perform two
experiments to evaluate the models’ extrapolation generalization ability on the initial values and the
system parameters. All samples are normalized so that Dom(pT ) = Dom(pS). See Appendix A for
more details.

Table 2: The initial values and system parameters ranges of interpolation and extrapolation test sets.

System Parameters Initial Values

Interpolation Extrapolation Interpolation Extrapolation

LV k ∼ U(0, 250)4 k ∼ U(250, 300)4 p0 ∼ U(30, 200)4 p0 ∼ U(0, 30)4

FHN c ∼ U(1.5, 5) c ∼ U(0.5, 1.5) x0 ∼ U(2, 10) x0 ∼ U(0, 2)

SEIR β ∼ U(0.45, 0.9) β ∼ U(0.3, 0.45) I0 ∼ U(30, 100) I0 ∼ U(10, 30)
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Table 3: RMSEs on initial values and system parameter interpolation and extrapolation test sets.

RMSE
LV FHN SEIR

k p0 c x0 β I0

Int Ext Int Ext Int Ext Int Ext Int Ext Int Ext

Seq2Seq 0.050 0.215 0.028 0.119 0.093 0.738 0.079 0.152 1.12 4.14 2.58 7.89

FC 0.078 0.227 0.044 0.131 0.057 0.402 0.057 0.120 1.04 3.20 1.82 5.85

Transformer 0.074 0.231 0.067 0.142 0.102 0.548 0.111 0.208 1.09 4.23 2.01 6.13

NeuralODE 0.091 0.196 0.050 0.127 0.163 0.689 0.124 0.371 1.25 3.27 2.01 5.82

Figure 2: Seq2Seq predictions on a k-
interpolation (left) and a k-extrapolation (right)
test samples of LV dynamics, the vertical black
line separates the input and forecasting period.

Figure 3: FC predictions on a c-interpolation
(left) and a c-extrapolation (right) test samples
of FHN dynamics, the vertical black line in the
plots separates the input and forecasting period.

Table 3 shows the prediction RMSEs of the models on initial values and system parameter interpo-
lation and extrapolation test sets. We observe that the models’ prediction errors on extrapolation test
sets are much larger than the error on interpolation test sets. Figures 2-3 show that Seq2Seq and
FC fail to make accurate prediction when tested outside of the parameter distribution of the train-
ing data even though they make accurate predictions for parameter interpolation test samples. All
experiments were run on Amazon Sagemaker [Liberty et al., 2020].

2.5 Case study: COVID-19 forecasting

The COVID-19 trajectories of the numbers of infected (I), removed (R) and death (D) cases can
be considered as a dynamical system that is governed by complex ODEs. We perform a benchmark
study by comparing the various deep learning models and ODE-based models on the task of 7-day
ahead COVID-19 trajectories prediction. All details can be found in Appendix B. We observe that
ODEs-based methods overall outperform the deep learning methods, especially for week July 13.
One potential reason is that the number of cases in most states increase dramatically in July, and
the test data is outside of the training data range. Neural networks are unreliable in this case as we
show in section 2.3. Another potential reason is that we are still in the early or middle stage of the
COVID-19 pandemic, which can affect the distribution of the unknown parameters. For instance,
the contact rate β changes with government regulations, and the recovery rate γ may increase as we
gain more treatment experience. Thus, there is a high chance that test samples are outside of the
parameter domain of training data. In that case, the deep learning models would not make accurate
predictions for COVID-19 as we show in section 2.4. See Appendix B for details.

3 Conclusion

We experimentally show that four deep sequence learning models fail to generalize to unseen data
with shifted distributions in both the data and dynamical system parameter domains, even though
these models are rich enough to memorize the training data, and perform well on interpolation tasks.
This poses a challenge on learning real world dynamics with deep learning models. To achieve
accurate prediction of dynamics, this work shows that we need to ensure that both the data and
parameter domains of the training set are sufficient enough to cover the domains of the test set.
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A Additional Experiments Details

We use L2 loss for training and all hyperparamters, including number of layers, hidden dimension
and learning rate, are tuned exhaustively on the validation set.

Sine We generate 2000 samples of length 60 from sin(wt+ b). We set step size as 0.2, frequency
w ∼ U(0.5, 1.5) and phase b ∼ U(0, 5). We shuffle and split these samples into 1200 training
samples, 400 validation samples and 400 interpolation test samples.

SEIR We generate 6000 synthetic SEIR time series of length 60 based on Equ 2.3 with
scipy.integrate.odeint with various parameters β, σ, γ and initial value I0. First, we split all samples
into a training set, a validation set, an interpolation test set and extrapolation test set based on the
range of β. The training/validation/interpolation-test sets have the same range of β ∼ U(0.45, 0.9).
The extrapolation-test set contains time series with β ∼ U(0.3, 0.45). The DL models are trained
to make 40-step ahead predictions given the first 20 steps as input. We remove the trend of the
trajectories of four variables by differencing. Then we investigate if the DL models can extrapolate
to different initial I , so we also try training the models on times series with I ∼ U(30, 100), and test
them on an I0-interpolation test set where I ∼ U(30, 100) and an I0-extrapolation test set where
I ∼ U(1, 30).

Figure 4: The data distribution of the training,
β(I0)-interpolation and β(I0)-extrapolation test
sets

Figure 5: FC predictions on a β-interpolation
(left) and a β-extrapolation (right) test samples
of SEIR dynamics, the vertical black line in the
plots separates the input and forecasting period.

LV We generate 6000 synthetic 4D LV time series of length 20. We normalize each sample so
that all values are within the range of 0 and 1. The training/validation/interpolation-test sets have
the same range of k ∼ U(0, 250)4, the and extrapolation-test set contains time series with k ∼
U(250, 300)4. We also investigate if the DL models can extrapolate to different initial values p0.
We also train the models on samples with p0 ∼ U(30, 200)4 and test them on p0 ∼ U(0, 30)4 with
same experimental setup.

FNH We generate 6000 synthetic FNH time series of length 50. Same as before, we test if the DL
models can generalize to different range of parameters and initial values. The models are trained
to make 25-step ahead predictions given the first 25 steps as input. c-interpolation test set contains
sample with c ∼ U(1.5, 5) and c-extrapolation test set contains samples with c ∼ U(0.5, 1.5).
x0-interpolation test set contains sample with x0 ∼ U(2, 10) and x0-extrapolation test set contains
sample with x0 ∼ U(0, 2).

B Case study: COVID-19 forecasting

B.1 Proposed Method: AutoODE

We present our proposed AutoODE model that given an ODE in Eqn. (B.1) learns the unknown pa-
rameters with automatic differentiation using gradient-based methods. Unlike with neural networks,
AutoODE is data-efficient, and the model only needs to be fit on the days before the prediction week.
We apply this physics-based method to COVID-19 forecasting, using the ODEs in Eqn. (B.1) im-
proved upon from the SuEIR model [Zou et al., 2020], where we estimate the unknown parameters
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βi, σi, µi, and γi, which denote the transmission, incubation, discovery, and recovery rates, respec-
tively.

The total population Ni = Si + Ei + Ui + Ii + Ri is assumed to be constant for each of the U.S.
states i = 1, . . . , n. 

dSi

dt
= −

∑n
j=1[βi(t)Aij(Ij + Ej)Si]

Ni
,

dEi

dt
=

∑n
j=1[βi(t)Aij(Ij + Ej)Si]

Ni
− σiEi,

dUi

dt
= (1− µi)σiEi,

dIi
dt

= µiσiEi − γiIi,

dRi

dt
= γiIi,

dDi

dt
= ri(t)

dRi

dt
.

(B.1)

Low Rank Approximation to the Transmission Matrix: Aij We introduce a transmission ma-
trix A to model the transmission rate among the 50 U.S. states. Each entry of A is the element-wise
product of the sparse U.S. states adjacency matrix M and the correlation matrix C that is learned
from data, that is, A = C �M ∈ Rn×n. We omit the transmission between the states that are
not adjacent to each other to avoid overfitting. To reduce the number of parameters and improve
the computational efficiency to O(kn), we use a low rank approximation to generate the correlation
matrix C = BTD, where B,D ∈ Rk×n for k << n.

Piecewise Linear Transmission Rate: βi(t) Most compartmental models assume the transmis-
sion rate βi is constant, which does not hold for COVID-19. The transmission rate of COVID-19
changes over time due to government regulations, such as school closures and social distancing.
Even though we do short-term forecasting (7 days ahead), it is possible that the transmission rate
may change during the training period. Instead of a constant approximation to βi, we use a piecewise
linear function over time βi(t), and set the breakpoints, slopes and biases as trainable parameters.

Death Rate Modeling: ri(t) Figure 6 shows the trajectories of the number of accumulated re-
moved and death cases in four different states. We can see a relationship between the numbers of
accumulated removed and death cases can be close to linear, exponential or concave. Since we do
short-term forecasting, the death rate ri(t) can be assumed as a linear function ait+ bi to cover both
the convex and concave functions, where ai and bi are set as learnable parameters.

Numerical Integration To solve the coupled ordinary differential equations, we use the 4-th order
Runge-Kutta Method (RK4) numericalbook. In the Neural ODE method chen19, the authors use the
adjoint method to have the neural networks bypass the numerical solver, and be applicable to higher
dimensional problems. In our case, since our method uses low dimension ordinary differential equa-
tions, RK4 is sufficient to generate accurate predictions. We directly implement RK4 in Pytorch,
and allow backpropagation through it with a fixed time-step ∆t.

Weighted Loss Function We set the unknown parameters in Eqn. (B.1) as trainable, and apply a
gradient-based optimizer to minimize the following weighted loss function:

L(A,β,σ,µ,γ, r) =
1

T

T∑
t=1

w(t)

[
l(Ît, It) + α1l(R̂t, Rt) + α2l(D̂t, Dt)

]
,

with weights α1, α2 and loss function l(·, ·) to find the optimal parameters. We utilize these weights
to balance the loss of the three states due to scaling differences, and also reweigh the loss at different
time steps. We give larger weights to more recent data points by setting w(t) =

√
t. The constants,

α1, α2 and T are tuned on the validation set. We set l(·, ·) to be the quantile loss MQCNN2018Wen
for both AutoODE and the DL models.
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Figure 6: The trajectories of number of accumulated removed and death cases at New York, North
Carolina, Louisiana and Michigan.

B.2 Experimental Results

Dataset We use the COVID-19 data from Apr 14 to Sept 12 provided by Johns Hopkins Univer-
sity [Dong et al., 2020]. It contains the number of cumulative number infected (I), recovered (R)
and death (D) cases. Figure 7 shows the rolling averages and standard deviation intervals of daily
increase time series in New York, Pennsylvania, Maryland and Virginia.

Experimental Setup We investigate the following six DL models on forecasting COVID-19 tra-
jectories, sequence to sequence with LSTMs (Seq2Seq), Transformer, autoregressive fully con-
nected neural nets (FC), Neural ODE, graph convolution networks (GCN) and graph attention net-
works (GAN). To train these DL models, we standardize I , R and D time series of each state individ-
ually to avoid one set of features dominating another. We use sliding windows to generate samples
of sequences before the week that we want to predict and split them into training and validation
sets. To train ODEs-based models, we rescale the trajectories of the number of cumulative cases
of each state by the population of that state. We perform exhaustive search of the hyperparameters,
including the learning rate, hidden dimensions and number of layers, for every DL model on the
validation set. All these DL models are trained to predict the number of daily new cases instead of
the number of accumulated cases because we want to detread the time series, and put the training
and test samples in the same approximate range. For graphical models, we view each state as a node,
and then the adjacency matrix is the US states adjacency matrix.

Results Table 4 shows the 7-day ahead prediction mean absolute errors of three features I , R and
D for the weeks of July 13, Aug 23 and week Sept 6. We can see that AutoODE overall performs
better than SuEIR and all the DL models. FC and Seq2Seq have better prediction accuracy of death
counts. All DL models have much bigger errors on the prediction of week July 13, which may be
due to insufficient training data. Another reason is that the number of cases in most states increase
dramatically in July, and the test data is outside of the training data range, and neural networks are
known to not be reliable in these cases Kouw2018domain, Amodei2016Safety. Figure 8 shows the
7-day ahead COVID-19 predictions of I , R and D in Massachusetts by AutoODE and the best DL
model (FC). The prediction by AutoODE is closer to the target and has smaller confidence intervals.
This demonstrates the effectiveness of our model, and the benefits of the combination of machine
learning techniques with compartmental models.
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Table 4: Proposed AutoODE wins in predicting I and R: 7-day ahead prediction MAEs on COVID-
19 trajectories of accumulated number of infectious, removed and death cases.

MAE 07/13 ∼ 07/19 08/23 ∼ 08/29 09/06 ∼ 09/12

I R D I R D I R D

FC 8379 5330 257 559 701 30 775 654 33

Seq2Seq 5172 2790 99 781 700 40 728 787 35

Transformer 8225 2937 2546 1282 1308 46 1301 1253 41

NeuralODE 7283 5371 173 682 661 43 858 791 35

GCN 6843 3107 266 1066 923 55 1605 984 44

GAN 4155 2067 153 1003 898 51 1065 833 40

SuEIR 1746 1984 136 639 778 39 888 637 47

AutoODE 818 1079 109 514 538 41 600 599 39

Figure 7: The rolling averages and standard deviation intervals of daily increase time series of four
US states. Left: the number of confirmed cases; Middle: the number of recovered cases; Right: the
number of death cases

Figure 8: Proposed AutoODE wins: I , R and D predictions for week 08/23 ∼ 08/29 in Mas-
sachusetts by our proposed AutoODE model and the best performing DL model FC.
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