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Abstract

Designed to learn long-range interactions on sequential data, transformers continue
to show state-of-the-art results on a wide variety of tasks. In contrast to CNNs,
they contain no inductive bias that prioritizes local interactions. This makes them
expressive, but also computationally infeasible for long sequences, such as high-
resolution images. We demonstrate the effectiveness of combining the inductive
bias of CNNs with the expressivity of transformers to enable applications in high-
resolution image synthesis tasks. This allows us to investigate effects of sequence
permutations on the autoregressive prediction task. Finally, we present results on
the potential of our approach to serve as a universal image synthesis model.

1 Introduction

Transformers are on the rise—they are now the de-facto standard architecture for language tasks
[1, 2, 3, 4] and are increasingly adapted in other areas such as audio [5] and vision [6, 7]. In contrast
to the predominant vision architecture, convolutional neural networks (CNNs), the transformer
architecture contains no built-in inductive prior on the locality of interactions and is therefore free
to learn arbitrary relationships among its inputs. However, this generality also implies that it has to
learn all relationships, whereas CNNs have been designed to exploit the two-dimensional structure
of images. Thus, the increased expressivity of transformers comes with large computational costs.
Energy and time requirements of state-of-the-art transformer based models limit the ability to perform
extensive experiments with these models. Observations that transformers tend to learn convolutional
structures [7] thus beg the question: Do we have to re-learn everything we know about images
from scratch each time we train a vision model, or can we efficiently encode prior knowledge while
still retaining the flexibility of transformers? We hypothesize that low-level processing of images
is well described by a locally connected structure, i.e. a convolutional architecture, whereas this
structural assumption ceases to be effective at higher levels. This suggests an approach that fuses
CNNs and transformers to combine the benefits of both: General purpose, efficient CNN feature
extraction, combined with the ability to learn transformer models at greatly reduced costs with
the same architecture across different tasks. Specifically, we employ a two-stage approach and
use discrete representation learning to learn a CNN-based VQVAE [8] model which produces a
compressed representation of its input. This compact discrete representation of the input is then
processed by a transformer model via autoregressive next-token prediction.

2 Combining Vision Specific Architectures with Generic Transformers

Preliminaries The defining characteristic of the transformer architecture [1] is that it models
interactions between its inputs solely through attention [9, 10, 11] which enables them to faithfully
handle interactions between inputs regardless of their relative position to one another. Originally
applied to language tasks, inputs (zi) to the transformer were given by tokens, but arbitrary discrete
signals, such as those obtained from audio or images, can be used. Each layer of the transformer then
consists of an attention mechanism, which allows for interaction between inputs at different positions,
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Figure 1: Transformers with efficient priors unify a wide range of image synthesis tasks. We show 256× 256

synthesis results across different conditioning inputs and datasets, all obtained with the same approach to exploit
inductive biases of CNN architectures in combination with the expressivity of transformer architectures.

followed by a position-wise fully connected network, which is applied to all positions independently.
Since the attention mechanism relies on the computation of inner products between all pairs of
elements in the sequence, its computational complexity increases quadratically with the sequence
length. While the ability to consider interactions between all elements is the reason transformers
efficiently learn long-range interactions, it is also the reason transformers quickly become infeasible,
especially on images, where the sequence length itself scales quadratically with the resolution.
However, the two-dimensional structure of images suggests that local interactions are particularly
important. CNNs exploit this structure by restricting interactions between input variables to a local
neighborhood defined by the kernel size of the convolutional kernel. Applying a kernel thus results
in costs that scale linearly with the overall sequence length (the number of pixels in the case of
images) and quadratically in the kernel size, which, in modern CNN architectures, is often fixed to a
small constant such as 3 × 3. This inductive bias towards local interactions thus leads to efficient
computations, but the wide range of specialized layers which are introduced into CNNs to handle
different synthesis tasks [12, 13, 14, 15, 16] suggest that this bias is often too restrictive.

Approach To benefit from the efficiency of CNNs and the flexibility of transformers, we first learn
a CNN-based autoencoder and use its latent code as inputs to a transformer. Through the size of the
latent code we can control the trade-off between computational costs for training the transformer, and
the quality of reconstructions which is an upper bound on synthesis performance. In particular, we
make use of vector quantization [8] and train a VQVAE variant which results in discrete latent codes
from which an input can be faithfully reconstructed. Our VQVAE is trained with a combination of
perceptual and adversarial losses, which enables a large reduction in sequence length while retaining
visually pleasing synthesis results. In contrast to previous works which applied pixel-based [17, 18]
and transformer-based autoregressive models [6] on top of a VQVAE, we aim to push the limits of
efficiency of transformer-based models by deliberately introducing a CNN-based VQVAE which
benefits from suitable inductive biases for images, and mainly rely on the transformer architecture
after the point where this inductive prior breaks down. As we show in the subsequent experiments,
this approach yields an efficient and universal image synthesis model.

Efficiency Gains To assess the efficiency gains of our approach, we compare results between
training a transformer directly on pixels, and training it on top of a VQVAE’s latent code, given a
fixed computational budget. We follow [6] and learn a dictionary of 512 RGB values on CIFAR10,
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Figure 2: Top: All sequence permutations we investigate, illustrated on a 4× 4 grid. Bottom: The transformer
architecture is permutation invariant but next-token prediction is not: The average loss on the validation split
of ImageNet, corresponding to the negative log-likelihood, differs significantly between different prediction
orderings. Among our choices, the commonly used row-major order performs best.

such that each of its images is represented by a sequence of 32 × 32 = 1024 inputs, each taking
integer values between 0 and 511. Additionally, we train the same transformer architecture on top
of a VQVAE with a latent code of size 16× 16 = 256 and a dictionary of 1024 values. We observe
improvements of 18.63% for FID scores and 14.08 times faster sampling of images.
Quadratic complexity of transformers with respect to the sequence length means that efficiency
gains become even more drastic at higher resolutions. Moreover, due to redundancy in pixels, we
observe that we do not need to scale the discrete latent representation proportionally to the image
resolution. In fact, 16 × 16 codes still produce perceptually good reconstruction for images of
size 256 × 256, such that within this regime we have (up to the first stage training costs, which
are one-time) constant computational costs. This enables the use of transformers for efficent high
resolution image synthesis and allows us to perform the experiments of the following sections which
would be otherwise infeasible. All subsequent experiments use a VQVAE with a latent code of
size 16 × 16 and a dictionary of 1024 values to represent images of resolution 256 × 256, and a
GPT2-medium architecture (307 M parameters) [3] is used for the transformer.

3 Introducing Vision Specific Biases within Generic Transformers

On the Inherent Ordering of Image Data For the "classical" domain of transformer models,
natural language, the order of tokens is defined by the language at hand. For images and their discrete
representations, in contrast, it is not clear which linear ordering to use. Intuitively, the difficulty
to predict the next token depends on the available context for that prediction. To investigate our
hypothesis that, for image data, this task is dependent on the choice of prediction ordering, we
consider the following five different permutations of the input sequence of codebook indices: (i) row
major, where the image representation is unrolled from top left to bottom right. (ii) spiral out, which
incorporates the prior assumption that most images show a centered object. (iii) z-curve, also known
as z-order or morton curve, which introduces the prior of preserved locality when mapping a 2D
image representation onto a 1D sequence. (iv) subsample, where prefixes correspond to subsampled
representations. (v) alternate, which is related to row major, but alternates the direction of unrolling
every row. For a graphical visualization of these permutation variants, see Fig. 2.
To analyze the effect of each permutation, we first train a VQVAE in the settings of Sec. 2 on
the ImageNet2012 dataset [19] on inputs of size 256 × 256. Then, given this VQVAE, we train a
transformer (same settings as in Sec. 2) for each permutation variant in a controlled setting, i.e. we
fix initialization, batch-size and computational budget for each variant. Fig. 2 shows the evolution
of negative log-likelihood for each variant as a function of training iterations. Interestingly, row
major performs best in terms of this metric, whereas the more hierarchical subsample prior does
not induce any helpful bias for this task. Fig. 13 shows samples of each model variant. We observe
that the two worst performing models in terms of negative log-likelihood (subsample and spiral out)
tend to produce more textural samples, while the other variants synthesize samples with much more
recognizable structures. Overall we can conclude that the autoregressive task is not permutation-
invariant, but the commonly used row major ordering [17, 6] outperforms other orderings.
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Figure 3: Scale-dependent samples for given inputs demonstrate control through multiscale-priors. See Sec. 3.

Integrating Multiscale Priors Besides investigating the effect of different prediction orderings on
image generating transformers, we also include another popular inductive bias: Modeling an image
through multiple different scales. In this setting, an image is iteratively generated in a coarse-to-fine
manner [20]. Given a discrete 16× 16 representation of an image x, we consider all subscales with
spatial size equal to a power of 2. To compute these scales, we first average pool with a kernel
size and stride of 16, 8, 4, 2, respectively, and then re-quantize with the codebook. We then model
the image in an autoregressive fashion over each scale, where each scale representation is unrolled
seperately. Fig. 3& 7 show results of this approach on a dataset of landscape images. Generating
an image autoregressively over the different scales now gives control on the output variance of the
image. The very first 1× 1 scale determines the overall appearance (e.g. color) of the image, whereas
using increasingly more scales produces samples which are perceptually closer to the input image.

4 A Unified Model for Different Conditional Image Synthesis Tasks

The versatility and generality of the transformer architecture makes it a promising candidate for
conditional image synthesis. Here, additional information c such as class labels or segmentation maps
are introduced and our goal is to learn the distribution of possible outcomes. Thus, the model has to
predict the probability of the next token given all previous tokens and the additional conditioning
information c, such that the conditional likelihood reads p(z|c) =

∏
i
p(zi|z<i, c). We propose to

model this task by simply prepending a discrete representation of the conditioning information of
interest to the discrete sequence (zi) which describes the image. We exploit the fact that c can itself
be a sequence (ci), and, for each conditioning, learn a seperate discrete representation with a VQVAE.
Using the same settings as before (i.e. image size 256× 256, latent size 16× 16), we perform various
conditional image synthesis experiments (for additional details see Sec. A.4):

(i): Semantic image synthesis, where we condition on unrolled discrete representations of semantic
segmentation masks of the ADE20K [21] and a web-scraped landscapes dataset; see Fig. 8 and Fig. 9.

(ii): Depth-to-image, where we include a 3D dimensional prior (depth information) in the model.
Again, we condition on a discrete representation of this additional information and obtain high-quality
results for both the restricted ImageNet [22] and the ImageNet2012 dataset, see Fig. 1, 4 and Fig. 5.

(iii): Pose-guided person synthesis: Instead of using the semantically rich information of either
segmentation or depth maps, Fig. 6 shows that the same approach as for the previous experiments can
be used to build a shape-conditional generative model on the DeepFashion [23] dataset.

(iv): Class-conditional image synthesis Here, the conditioning information c is a single index
describing the class label of interest. It can be directly concatenated with the corresponding sequence
(zi), increasing the total length of the sequence by one. Results on conditional sampling for both the
RIN and IN datasets can are demonstrated in Fig. 10 and Fig. 11.

All of these examples make use of the same methodology. Instead of requiring task specific archi-
tectures or modules, the flexibility of the transformer allows us to learn appropriate interactions for
each task, while the image-specific CNN architecture of the VQVAE—which can be reused across
different tasks—leads to short sequence lengths. In combination, the presented approach can be
understood as an efficient, general purpose mechanism for conditional image synthesis.
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Figure 4: Conditional samples for the depth-to-image model on restricted ImageNet.

A Supplementary

A.1 Models

VQVAE The architecture of our VQVAE model is the same for all experiments with 256 × 256
images, which includes VQVAEs learned on semantic segmentation masks or depth maps as in
Sec. 4. More specifically, we downsample from 256 × 256 × 3 to a discrete representation of
size 16× 16× 256 using strided convolutions and residual blocks and quantize this representation
with 1024 codes. For upscaling, the encoder architecture is reversed. We train the model with a
combination of a variant of perceptual loss (LPIPS, [24]) and a patch discriminator as in [25]. For
quantization, we employ a standard vector quantization loss as described in [8], where we use a
"commitment" factor β = 0.25. For the experiments on CIFAR-10 (see Sec. 2) we only downsample
once but otherwise adhere to this training protocol.

Transformer Our transformer model is identical to the GPT2-medium architecture [3] (307 M
parameters), which we train with a batch size b = 12 and a learning rate of b · 4.5 · 10−6 for all
experiments on the ImageNet dataset and the multiscale prior in Sec. 3. The experiments on other
visual priors (Sec. 4) use the same architecture in the GPT2-small setting. We generally produce
samples with a temperature t = 1.0 and a top-k cutoff at k = 100.

A.2 Datasets

We use the following datasets for our experiments:

• CIFAR-10 [26], to compare the effectivness of our approach vs. a pure transformer in image
space. See Sec. 2.

• DeepFashion [23], for pose-guided person and fashion synthesis. See Sec. 4 for results.

• ADE20K [21], for semantic image synthesis of indoor and outdoor scenes, see Sec. 4.

• ImageNet2012 [19] and Restricted ImageNet [22], for experiments on the effects of dif-
ferent inductive biases such as sequence ordering on image synthesis with transformers;
furthermore class conditional, unconditional and depth-to-image synthesis; Sec. 3 and Sec. 4.

• A web-scraped dataset of landscapes images, for semantic image synthesis (where segmen-
tation maps are obtained with the model by [27]) and incorporation of multiscale priors for
scale-dependent image synthesis.

Furthermore, we utilize the pretrained model by [28] to extract depth maps from the ImageNet
dataset.

A.3 Additional Synthesis Results

The following pages provide additional plots of synthesized images for depth-to-image (Fig. 4, 5),
pose-guided (Fig. 6), multiscale (Fig. 7), semantic (Fig. 8, 9), class-conditional (Fig. 10, 11) and
unconditional (Fig. 12, 13) image synthesis, respectively.
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Figure 5: Conditional samples for the depth-to-image model on ImageNet.

A.4 Additional Details on Conditional Image Synthesis Tasks

The following provides an overview of our experiments with different conditionings (see Sec. 4),
which were all executed with the same hyperparameters (in particular, an image size of 256× 256
and alatent size of 16× 16). Note that we use the same architecture for the VQVAE and transformer
model (GPT2-medium) across all tasks.

Semantic Image Synthesis The task of semantically and spatially controllable image synthesis
through segmentation masks received significant attention in the last few years [12, 13, 15], where
approaches were mostly based on CNNs and directly modified inputs in image space. In contrast, we
propose to use a transformer model, which, conditioned on a discrete representation c = (ci) of a
segmentation map, generates a discrete representation (zi) of the training image data. As described
above, these discrete representations are obtained independently of the training of the transformer
using discrete representation learning (VQVAE), which both for z and c produce representations of
spatial size 16× 16. Results for the ADE20K and a web-scraped landscapes dataset can be found in
Fig. 8 and Fig. 9, indicating high-fidelity and variance in the synthesized outputs.

Depth-to-Image Recent work on generative image modeling [29] suggests that pure 2D models fail
to produce coherent outputs since they lack an understanding of the actual 3D world. We address
this problem by using depth maps to introduce 3D-knowledge into the model. We propose to include
this powerful visual prior by first learning a discrete representation of depth maps, and, in analogy
to the approch for segmentation maps, learn the conditional density p(z|c) by concatenating this
representation with the image representation (zi). Results of 256× 256 images are depicted in Fig. 1,
4 and Fig. 5, indicating high quality in synthesis both for the Restricted ImageNet and the more
challenging ImageNet2012 dataset.

Pose-Guided Person Synthesis Instead of the semantically rich prior/information of either segmen-
tation masks or depth maps, many computer vision problems involve sparse information. A particular
application is conditional appearance and shape generation from keypoints [30]. Fig. 6 shows that the
same approach as for the previous experiments can be used to build a shape-conditional generative
model on the DeepFashion dataset. Again, discrete representation learning is used to produce discrete
latent representations of both the RGB images and the shape images (keypoints) of the dataset, and
the conditioning information is concatentated with the image sequence.
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Figure 6: Conditional samples for the pose-guided synthesis model via keypoints.

input reconstruction input reconstruction
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Figure 7: Scale-dependent samples for given inputs demonstrate control through multiscale-priors. See Sec. 3.

conditioning samples conditioning samples

Figure 8: Samples from the semantically guided model trained on ADE20K.
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Figure 9: Samples from the semantically guided model trained on our landscapes dataset.

class exemplar samples class exemplar samples

Figure 10: Samples produced by the class-conditional model trained on restricted ImageNet.

class exemplar samples class exemplar samples

Figure 11: Samples synthesized by the class-conditional model trained on ImageNet.

unconditional samples from the RIN-model

Figure 12: Samples produced by an unconditional model trained on restricted ImageNet.
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Figure 13: Random samples from transformer models trained with different inductive priors for next pixel
prediction as described in Sec. 3.
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