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Abstract

A key factor in the success of deep neural networks is the ability to scale models
to improve performance by varying the architecture depth and width. This simple
property of neural network design has resulted in highly effective architectures for
a variety of tasks. Nevertheless, there is limited understanding of effects of depth
and width on the learned representations. In this paper, we study this fundamental
question. We begin by investigating how varying depth and width affects model
internal representations, finding a characteristic block structure in the hidden
representations of larger capacity (wider or deeper) models. We demonstrate that
this block structure arises when model capacity is large relative to the size of the
training set, and is indicative of the underlying layers preserving and propagating
the dominant principal component of their representations.1

1 Introduction
Deep neural network architectures are typically tailored to available computational resources by
scaling their width and/or depth. Remarkably, this simple approach to model scaling can result
in state-of-the-art networks for both high- and low-resource regimes [20]. Nevertheless, there is
limited understanding of how varying these properties affects the final model beyond its performance.
Investigating this fundamental question is critical, especially with the continually increasing compute
resources devoted to designing and training new network architectures. More concretely, we can ask,
how do depth and width affect the final learned representations? Do different model architectures
also learn different intermediate (hidden layer) features? In this paper, we study these core questions,
through detailed analysis of ResNet models with varying depths and widths trained on CIFAR-10 [10],
CIFAR-100 and ImageNet [4]. We show that depth/width variations result in distinctive characteristics
in the model internal representations. Specifically, our contributions are as follows:

• We apply CKA (centered kernel alignment) to measure the similarity of the hidden representations
of different neural network architectures, finding that representations in wide or deep models
exhibit a characteristic structure, which we term the block structure. We study how the block
structure varies across different training runs, and uncover a connection between block structure
and model overparametrization — block structure primarily appears in overparameterized models.
• Through further analysis, we find that the block structure corresponds to hidden representations

having a single principal component that explains the majority of the variance in the representation,
which is preserved and propagated through the corresponding layers. We show that some hidden
layers exhibiting the block structure can be pruned with minimal impact on performance.
• Finally, with this insight on the hidden representational structures within a single network, we turn

to comparing representations across different architectures, finding that models without the block
structure show reasonable representation similarity in corresponding layers, but block structure
representations are unique to each model.
∗Work done as a member of the Google AI Residency program.
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Related Work. Neural network models of different depths and widths have been studied through the
lens of universal approximation theorems [3, 7, 16, 13, 5, 12] and functional expressivity [21, 18].
However, this line of work only shows that such networks can be constructed, and provides neither a
guarantee of learnability nor a characterization of their performance when trained on finite datasets.
Other work has studied the behavior of neural networks in the infinite width limit by relating
architectures to their corresponding kernels [14, 11, 8]. In contrast to this theoretical work, we
attempt to develop empirical understanding of the behavior of practical neural network architectures
after training. Previous empirical work has studied the effects of width and depth upon model
accuracy in the context of convolutional neural network architecture design, finding that optimal
accuracy is typically achieved by balancing width and depth [23, 20]. We instead seek to study the
impact of width and depth on network internal representations by applying techniques for measuring
similarity of neural network hidden representations [9, 17, 15].

2 Experimental Setup and Background
Our goal is to understand the effects of depth and width on the function learned by the underlying
neural network, in a setting representative of models used in practice. We thus train ResNets [6, 23]
on standard image classification datasets CIFAR-10, CIFAR-100 and ImageNet. For CIFAR ResNets,
we scale networks’ depths by increasing the number of blocks in each stage, and scale width by
multiplying the number of neurons in each layer by some width multiplier. More details on network
design, training parameters, and accuracies of all investigated models, can be found in Appendix B.

We use linear centered kernel alignment [9, 2] to measure similarity between neural network hidden
representations. We compute CKA by averaging HSIC scores over k minibatches:
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where Xi ∈ Rn×p1 and Yi ∈ Rn×p2 are matrices containing the activations of two layers, one with p1
neurons and another p2 neurons, to the same minibatch of n examples sampled without replacement.
We compute the HSIC values for CKA in Eq. 1 using an unbiased estimator of CKA [19]:
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where K̃ and L̃ are obtained by setting the diagonal entries of K and L to zero. This minibatch
estimator gives the same result as if the entire dataset were used to compute HSIC1 (see Appendix A).

3 Depth, Width and Model Internal Representations
We begin our study by investigating how the depth and width of a model architecture affects its
internal representation structure. How do representations evolve through the hidden layers in different
architectures? How similar are different hidden layer representations to each other?

3.1 Internal Representations and the Block Structure
In Figure 1, we show the results of training ResNets of varying depths (top row) and widths (bottom
row) on CIFAR-10. For each ResNet, we use CKA to compute the representation similarity of all
pairs of layers within the same model. Note that the total number of layers is much greater than the
stated depth of the ResNet, as the latter only accounts for the convolutional layers in the network but
we include all intermediate representations. We can visualize the result as a heatmap, with the x and
y axes representing the layers of the network, going from the input layer to the output layer.

The heatmaps start off as showing a checkerboard-like representation similarity structure, which
arises because representations after residual connections are more similar to other post-residual
representations than representations inside ResNet blocks. As the model gets wider or deeper, we see
the emergence of a distinctive block structure — a considerable range of hidden layers that have very
high representation similarity (seen as a yellow square on the heatmap). This block structure mostly
appears in the later layers (the last two stages) of the network. As shown in Appendix Figure D.1,
while the exact size and position of the block structure can vary, it is present across all training runs.
We observe similar results in networks without residual connections (Appendix Figure C.1).
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Figure 1: Block struc-
ture emerges with in-
creasing width or depth.
As we increase the depth
or width of neural net-
works, we see the emer-
gence of a large, contigu-
ous set of layers with very
similar representations —
the block structure. Each
of the panes of the figure
computes the CKA simi-
larity between all pairs of
layers in a single neural
network and plots this as
a heatmap, with x and y
axes indexing layers. See
Appendix Figure C.1 for
block structure in wide
networks without residual
connections.

Figure 2: Block struc-
ture emerges in nar-
rower networks when
trained on less data.
We plot CKA similarity
heatmaps as we increase
network width (going
right along each row)
and also decrease the
dataset size (down each
column). As a result of
the increased model ca-
pacity (with respect to
the task) from smaller
dataset size, smaller (nar-
rower) models now also
exhibit the block struc-
ture.

3.2 The Block Structure and Model Overparametrization
Having observed that the block structure emerges as models get deeper and/or wider (Figure 1), we
next study whether it is connected to the absolute model size, or to the size of the model relative to
the size of the training data.

The results of this experiment with varying network widths are shown in Figure 2, while the cor-
responding plot with varying network depths (which supports the same conclusions) can be found
in Appendix Figure D.2. Each column of Figure 2 shows the internal representation structure of a
fixed architecture as the amount of training data is reduced, and we can clearly see the emergence
of the block structure in narrower (lower capacity) networks as less training data is used. Refer to
Figures D.3 and D.4 in the Appendix for a similar set of experiments on CIFAR-100. Together, these
observations indicate that the block structure in the internal representations arises in models that are
heavily overparameterized relative to the training dataset.

4 Probing the Block Structure
In the previous section, we show that wide and/or deep neural networks exhibit a block structure in
the CKA heatmaps of their internal representations, and that this block structure arises from the large
capacity of the models in relation to the learned task. Nonetheless, there remains a key open question,
which this section seeks to answer: what is happening to the neural network representations as they
propagate through the block structure?
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4.1 The Block Structure and The First Principal Component
For centered matrices of activations X ∈ Rn×p1 , Y ∈ Rn×p2 , linear CKA may be written as
CKA(XXT, Y Y T) =

∑p1

i=1

∑p2

j=1 λ
i
Xλj

Y 〈ui
X , uj

Y 〉2/ (‖λX‖2‖λY ‖2) where ui
X ∈ Rn and ui

Y ∈
Rn are the ith normalized principal components of X and Y and λi

X and λi
Y are the corresponding

squared singular values [9]. As the fraction of the variance explained by the first principal components
approaches 1, CKA reflects the squared alignment between these components 〈u1

X , u1
Y 〉2. We find that,

in networks with a visible block structure, the first principal component explains a large fraction of the
variance, whereas in networks with no block structure, it does not (Appendix Figure D.5), suggesting
that the block structure reflects behavior of the first principal component of the representations.

Figure 3: Block structure arises from preserving and propagating the
(dominant) first principal component (PC) of the layer representations.
In each group of plots, CKA of the representations (top right) shows block
structure in a deep (left group) or wide (right group) network. Layers in the
block structure have a dominant first PC (bottom left). This PC is also preserved
throughout the block structure, seen by comparing the squared cosine similarity
of the first principal component between layers (top left) to CKA (top right).
Removing the first PC from the representations (bottom right), reduces the
block structure.

Figure 3 explores this rela-
tionship between the block
structure and the first princi-
pal components of the cor-
responding layer represen-
tations. In layers that are
part of the block structure,
the first principal compo-
nent explains a large propor-
tion of the variance (bottom
left), and the cosine simi-
larities between first prin-
cipal components of pairs
of layers (top left) closely
resembles CKA (top right).
Removing this first princi-
pal component nearly elim-
inates the block structure
(bottom right). Together
these results demonstrate
that the block structure
arises from preserving and propagating the first principal component across its constituent layers.

Although layers inside the block structure have representations with high CKA and similar first
principal components, each layer nonetheless computes a nonlinear transformation of its input.
Appendix Figure D.6 shows that the sparsity of ReLU activations inside and outside of the block
structure is similar. Thus, ReLU activations in the block structure are sometimes in the linear regime
and sometimes in the saturating regime, just like activations elsewhere in the network.

Additional experiments with linear probes [1] further show that some layers that make up the block
structure can be removed with minimal performance loss. Refer to Appendix E for more details.

5 Depth and Width Effects on Representations Across Models

Figure 4: Representations within “block structure” differ across initial-
izations. Groups of plots shows CKA between layers of models with the same
architecture but different initializations (off the diagonal) or within a single
model (on the diagonal). For narrow, shallow models such as ResNet-38 (1×),
there is no block structure, and CKA across initializations closely resembles
CKA within a single model. For wider (middle) and deeper (right) models,
representations within the block structure are highly dissimilar.

We next look at how depth
and width affect the hid-
den representations across
models. Concretely, are
learned representations sim-
ilar across models of differ-
ent random initializations?
How is this affected as
model capacity is changed?
Figure 4 illustrates CKA
heatmaps for a smaller
model (left), wide model
(middle) and deep model
(right), trained from random
initializations. The smaller
model does not have the
block structure, and repre-
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sentations across seeds (off diagonal plots) exhibit the same grid-like similarity structure as within
a single model. The wide and deep models show block structure in all their seeds (as seen in plots
along the diagonal), and comparisons across seeds (off-diagonal plots) show that while layers not in
the block structure exhibit some similarity, the block structure representations are highly dissimilar
across models.

6 Conclusion
In this work, we study the effects of width and depth on neural network representations. Through
experiments on CIFAR-10, CIFAR-100 and ImageNet, we have demonstrated that as either width
or depth increases relative to the size of the dataset, analysis of hidden representations reveals the
emergence of a characteristic block structure that reflects the similarity of a dominant first principal
component, propagated across many hidden layers in the network. Further analysis finds that
while the block structure is unique to each model, other learned features are shared across different
initializations and architectures, particularly across relative depths of the network. There remain
interesting open questions on how the block structure arises through training, and using the insights
on network depth and width to inform optimal task-specific model design.
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Appendix
A Minibatch CKA

Our approach of estimating HSIC on minibatches is equivalent to the bagging block HSIC approach
of [22]. Below, we prove that the unbiased estimator of HSIC averaged over minibatches converges
to the same value as the same estimator applied to the full dataset.
Proposition 1. Let K ∈ Rm×m and L ∈ Rm×m be two kernel matrices constructed by applying
kernel functions k and l respectively to all pairs of examples in a dataset D. Form c random
partitionings p of D into m/n minibatches b of size n, and let K̃b,p ∈ Rn×n and L̃b,p ∈ Rn×n

be kernel matrices constructed by applying kernels k and l to all pairs of examples within each
minibatch. Define U0 = HSIC1(K,L), the value of HSIC1 applied to the full dataset, and Ũp =
n
m

∑m/n
b=1 HSIC1(K

b,p,Lb,p), the average value of HSIC1 over the minibatches in partitioning

(epoch) p. Then 1
c

∑c
p=1 Ũp

P−→ U0 as c→∞.

Proof. Let im4 be the set of all 4-tuples of indices between 1 and m where each index occurs exactly
once. As proven in Theorem 3 of [19], U0 is a U-statistic:

U0 = HSIC1(K,L) =
(m− 4)!

m!

∑
S∈im4

h(KS , LS), (3)

where K(i,j,q,r) = (Ki,j ,Ki,q,Ki,r,Kj,q,Kj,r,Kq,r) and the kernel of the U-statistic h is defined
in [19]. Let δbS be 1 if the 4-tuple of dataset indices S is selected in minibatch b and 0 otherwise.
Then:

Ũp =
(n− 4)!

n!

n

m

m/n∑
b=1

∑
S∈im4

δbSh(KS , LS). (4)

Taking the expectation with respect to δ, and noting that δ is independent of h(KS , LS),

Eδ[Ũp] =
(n− 4)!

n!

n

m

m/n∑
b=1

∑
S∈im4

Eδ
[
δbSh(KS , LS)

]
(5)

=
(n− 4)!

n!

n

m

m/n∑
b=1

∑
S∈im4

Eδ
[
δbS
]
h(KS , LS). (6)

By symmetry, Eδ
[
δbS
]

is the same for all example and batch indices. Specifically, there are n!/(n−4)!
4-tuples that can be formed from each batch and m!/(m − 4)! 4-tuples that can be formed from
the entire dataset, so the probability that a given 4-tuple is in a given batch is Eδ

[
δbS
]
= (n!/(n−

4)!)/(m!/(m− 4)!). Thus:

Eδ[Ũp] =
(m− 4)!

m!

∑
S∈im4

h(KS , LS) = U0. (7)

The minibatch indicators δbS are either 0 or 1, so their variances and covariances are bounded, and the

weighted sum in Eq. 4 has finite variance. Thus, by the law of large numbers, 1
c

∑c
p=1 Ũp

P−→ U0 as
p→∞.

B Training Details

Our CIFAR-10 and CIFAR-100 ResNets follow the same architecture as [6, 23]. The network’s layers
are evenly divided between three stages (feature map sizes), with numbers of channels increasing by
a factor of two from one stage to the next. We adjust the network’s width and depth by increasing the
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number of channels and layers respectively in each stage, following [23]. We train a set of models
where we fix the width multiplier of deep networks to 1 and experiment with models of depths 32, 44,
56, 110, 164. On CIFAR-100, the block structure only appears at a greater depth so we also include
depths 218 and 224 in our investigation. For wide networks, we examine width multipliers of 1, 2, 4,
8 and 10 and depths of 14, 20, 26, and 38. We use SGD with momentum of 0.9, together with a cosine
decay learning rate schedule and batch size of 128, to train each model for 300 epochs. Models are
trained with standard CIFAR-10 data augmentation comprising random flips and translations of up to
4 pixels. Each depth and width configuration is trained with 10 different seeds for CKA analysis.

For ImageNet ResNets, ResNet-50 and ResNet-101 architectures differ only by the number of layers
in the third (14× 14) stage. Thus, for experiments on ImageNet, we scale only the width or depth of
layers in this stage. We train for 120 epochs using SGD with momentum of 0.9 and a cosine decay
learning rate schedule at a batch size of 256.

For experiments with reduced dataset size, we subsample the training data from the original CIFAR
training set by the corresponding proportion, keeping the number of samples for each class the same.
All CKA heatmaps are then computed based on the full CIFAR test set.

Table B.1: Accuracy of examined neural networks on CIFAR-10 and CIFAR-100.

Depth Width CIFAR-10 Test
Accuracy (%)

CIFAR-100 Test
Accuracy (%)

32 1 93.5 71.2
44 1 94.0 72.0
56 1 94.2 73.3

110 1 94.3 74.0
164 1 94.4 73.9
14 1 92.0 67.8
14 2 94.1 72.9
14 4 95.4 77.0
14 8 95.9 80.0
14 10 96.0 80.2
20 1 92.8 69.4
20 2 94.6 74.4
20 4 95.4 77.6
20 8 96.0 80.2
20 10 95.8 80.8
26 1 93.3 70.5
26 2 94.9 75.8
26 4 95.6 79.3
26 8 95.9 80.9
26 10 95.8 81.0
38 1 93.8 72.3
38 2 95.1 75.9
38 4 95.5 78.6
38 8 95.7 79.8
38 10 95.7 80.5
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C Block Structure in a Different Architecture

Figure C.1: Block structure also appears in models without residual connections. We remove residual
connections from existing CIFAR-10 ResNets and plot CKA heatmaps for layers in the resulting architecture
after training. Since the lack of residual connections prevents deep networks from performing well on the task,
here we only show the representational similarity for models of increasing width. As previously observed in
Figure 1, the block structure emerges in higher capacity models.

D Probing the Block Structure

Figure D.1: Block structure varies across random initializations. We plot CKA heatmaps as in
Figure 1 for 5 random seeds of a deep model (top row) and a wide model (bottom row) trained on
CIFAR-10. While the size and position vary, the block structure is clearly visible in all seeds.
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Figure D.2: Block structure emerges in shallower networks when trained on less data (CIFAR-
10). We plot CKA similarity heatmaps as we increase network depth (going right along each row)
and also decrease the size (down each column) of training data. Similar to the observation made in
Figure 2, as a result of the increased model capacity (with respect to the task) from smaller dataset
size, smaller (shallower) models now also exhibit the block structure.

Figure D.3: Block structure emerges in shallower networks when trained on less data (CIFAR-
100). We plot CKA similarity heatmaps as we increase network depth (going right along each row)
and also decrease the size (down each column) of training data. Similar to the observation made in
Figure 2, as a result of the increased model capacity (with respect to the task) from smaller dataset
size, smaller (shallower) models now also exhibit the block structure.
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Figure D.4: Block structure emerges in narrower networks when trained on less data (CIFAR-
100). We plot CKA similarity heatmaps as we increase network width (going right along each row)
and also decrease the size (down each column) of training data. Similar to the observation made in
Figure 2, as a result of the increased model capacity (with respect to the task) from smaller dataset
size, smaller (narrower) models now also exhibit the block structure.
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Figure D.5: Top principal component explains a large fraction of variance in the activations of
models with block structure. Each row shows a different model configuration that is trained on
CIFAR-10, with the first 5 rows showing models of increasing depth, and the last 5 rows models of
increasing width. Columns correspond to different seeds. Each heatmap is labeled with the fraction
of variance explained by the top principal component of activations combined from the last 2 stages
of the model (where block structure is often found). Rows (seeds belonging to the same architecture)
are sorted by decreasing value of the proportion of variance explained. We observe that this variance
measure is significantly higher in model seeds where the block structure is present.
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Figure D.6: ReLU activations inside and outside the block structure are similarly sparse. To
rule out the possibility that the block structure arises because layers inside it behave linearly, we
measured the sparsity of the ReLU activations. We observe that a significant proportion of activations
are always non-zero, and the proportion is similar inside and outside the block structure. Thus,
although layers inside the block structure have similar representations, each layer still applies a
nonlinear transformation to its input.
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E Linear Probes and Collapsing the Block Structure

Figure E.1: Linear probe
accuracy. Top: CKA be-
tween layers of individual
ResNet models, for different
architectures and initializa-
tions. Bottom: Accuracy of
linear probes for each of the
layers before (orange) and
after (blue) the residual con-
nections.

Figure E.2: Effect of deleting
blocks on accuracy for mod-
els with and without block
structure. Blue lines show the
effect of deleting blocks back-
wards one-by-one within each
ResNet stage. (Note the plateau
at the block structure.) Vertical
green lines reflect boundaries
between ResNet stages. Hor-
izontal gray line reflects accu-
racy of the full model.

With the insight that the block structure is preserving key components of the representations, we
investigate how these preserved representations impact task performance throughout the network,
and whether the block structure can be collapsed in a way that minimally affects performance.

In Figure E.1, we train a linear probe [1] for each layer of the network, which maps from the layer
representation to the output classes. In models without the block structure (first 2 panes), we see a
monotonic increase in accuracy throughout the network, but in models with the block structure (last 2
panes), linear probe accuracy shows little improvement inside the block structure. Comparing the
accuracies of the probes for layers pre- and post-residual connections, we find that these connections
also play an important role in preserving representations in the block structure.

Informed by these results, we proceed to pruning blocks one-by-one from the end of each residual
stage, while keeping the residual connections intact, and find that there is little impact on test accuracy
when blocks are dropped from the middle stage (Figure E.2), unlike what happens in models without
block structure. When compared across different seeds, the magnitude of the drop in accuracy appears
to be connected to the size and the clarity of the block structure present. This result suggests that
block structure could be an indication of redundant modules in model design, and that the similarity
of its constituent layer representations could be leveraged for model compression.
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