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Abstract

Different components in a machine learning system - for example the choice of
model architecture and the learning algorithms are responsible for adding inductive
biases in a trained model. For example, standard training procedures bias neural
networks towards learning “simple” classification boundaries [29], convolutional
networks are location invariant [18], and MLPs ignore permutation in the input
space among others. These biases manifest themselves in the representations of raw
data learned by the model. While some previous work have showed the importance
of invariances for purposes of generalization and optimization, in this work, we
show the importance of proper inductive biases for adversarial robustness. By
means of simple theoretical setups, we show how the choice of representation
can drastically affect adversarial robustness. We also provide some experimental
evidence how incorporating better inductive biases can help improve robustness.

1 Introduction

Modern machine learning methods achieve a very high accuracy on wide range of tasks, e.g. in com-
puter vision, natural language processing etc. This has largely been made possible by incorporating
proper inductive biases; and that has helped achieve better generalization and accelerate optimization.
Convolutional Layers [16] and Recurrent Layers [7] provides domain-dependant inductive biases by
introducing translation invariance and temporal invariance respectively. Inductive Biases in Batch
Normalization [11] heavily sped up optimization of deep networks. The positional embeddings
in transformer architectures [34] allow the model to encode absolute and relative positions and
positionally invariant relationships. In Language models, using Byte Pair Encoding [28, 33] for words
reflects the inductive bias that words composed of similar subwords are related. Data augmentation,
for example in the form of random cropping, has long been used to achieve better generalization
behaviour in computer vision [15]

However, especially in vision tasks, they have been shown to be highly vulnerable to small adversarial
perturbations that are imperceptible to the human eye [3, 2, 6] . This vulnerability poses serious
security concerns when these models are deployed in real-world tasks (cf. [24, 27, 10, 17]). A large
body of research has been devoted to crafting defences to protect neural networks from adversarial
attacks (e.g. [6, 23, 31, 19, 38]). However, such defences have usually been broken by future
attacks [1, 30]. This arms race between attacks and defenses suggests that to create a truly robust
model would require a deeper understanding of the source of this vulnerability. Our goal in this paper
is not to propose new defenses, but to provide better answers to the question: what causes adversarial
vulnerability? In particular, we look at improper representation learning by way of incorrect inductive
biases as a source of adversarial vulnerability.
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Recent works [32, 38] have argued that the trade-off between robustness and accuracy might be
unavoidable. However, their setting involves a distribution that is not robustly separable by any
classifier. In such a situation there is indeed a trade-off between robustness and accuracy. In this
paper, we focus on settings where robust classifiers exist, which is a more realistic scenario for
real-world data. At least for vision, one may well argue that “humans” are robust classifiers, and as a
result we would expect that classes are well-separated at least in some representation space. In fact,
Yang et al. [35] show that classes are already well-separated in the input space. In such situations,
there is no need for robustness to be at odds with accuracy. A more plausible scenario which we
posit, and provide theoretical evidence in support of in Theorem 2, is that depending on the choice
of representations, the trade-off may exist or can be avoided. Recent empirical work [25, 20] has
also established that modifying the training objective to favour certain inductive biass in the learned
representations can automatically lead to improved robustness.

On a related note, it has been suggested in recent works that adversarially robust learning may
require more “complex” decision boundaries, and as a result may require more data [29, 26, 36, 19].
However, the question of decision boundaries in neural networks is subtle as the network learns a
feature representation as well as a decision boundary on top of it. We develop concrete theoretical
examples in Theorem 1 and 2 to establish that choosing one feature representation over another
may lead to visually more complex decision boundaries on the input space, though these are not
necessarily more complex in terms of statistical learning theoretic concepts such as VC dimension.

Summary of Contributions

1. The choice of the representation (and hence the shape of the decision boundary) can be important
for adversarial accuracy even when it doesn’t affect natural test accuracy. (See Theorem 1)

2. There exists data distributions and training algorithms, which when trained with (some fraction
of) random label noise have the following property: (i) using one representation, it is possible
to have high natural and robust test accuracies but at the cost of having training error; (ii) using
another representation, it is possible to have no training error (including fitting noise) and high
test accuracy, but low robust accuracy. (See Theorem 2).

3. To demonstrate the benefit of representation learning for adversarial robustness, we show that
learning richer representation by training with more fine-grained labels, subclasses within each
class, leads to higher robust accuracy.

2 Representation Learning and Adversarial Robustness

The choice of inductive biases incorporated in a model affects representations and introduces desirable
and possibly even undesirable (cf. [18]) invariances; for example, training convolutional networks are
invariant to (some) translations, while training fully connected networks are invariant to permutations
of input features. This means that fully connected networks can learn even if the pixels of each
training image in the training set are permuted with a fixed permutation [37]. This invariance is
worrying as it means that such a network can effectively classify a matrix (or tensor) that is visually
nothing like a real image into an image category.

In this section we present a result to show that there exists a data distribution where proper representa-
tion is necessary for small adversarial error as well as small test error whereas another representation
can provide low test error but necessarily have large adversarial error. Interestingly, the representation
that can achieve small adversarial error can look visually more complex due to larger number of
distinct linear regions in its decision boundary. However, statistically it will have a smaller VC dimen-
sion than its counterpart.We first present the theorems with a proof sketch for ease of understanding
and the more detailed proofs in Appendix B.
Theorem 1. For some universal constant c, and any 0 < γ0 < 1/

√
2, there exists a family of

distributions D defined on X × {0, 1} where X ⊆ R2 such that for all distributions P ∈ D, and
denoting by Sm = {(x1, y1) , · · · , (xm, ym)} a sample of size m drawn i.i.d. from P ,
(i) For any m ≥ 0, Sm is linearly separable i.e., ∀(xi, yi) ∈ Sm, there exist w ∈ R2, w0 ∈ R s.t.

yi
(
w>xi + w0

)
≥ 0. Furthermore, for every γ > γ0, any linear separator f that perfectly fits

the training data Sm hasRAdv,γ(f ;P) ≥ 0.0005, even thoughR(f ;P)→ 0 as m→∞.
(ii) There exists a function class H such that for some m ∈ O(log(δ−1)), any h ∈ H that perfectly

fits the Sm, satisfies with probability at least 1− δ,R(h;P) = 0 andRAdv,γ(h;P) = 0, for any
γ ∈ [0, γ0 + 1/8].
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Figure 1: Visualization of the distribution and classifiers used in the Proof of Theorem 1 and 2. The
Red and Blue indicate the two classes.

A complete proof of this result appears in Appendix B.1, but first, we provide a sketch of the key idea
here.The distributions in family D will be supported on balls of radius at most 1/

√
2 on the integer

lattice in R2. The true class label for any point x is provided by the parity of a+ b, where (a, b) is
the lattice point closest to x. However, the distributions in D are chosen to be such that there is also a
linear classifier that can separate these classes, e.g. a distribution only supported on balls centered at
the points (a, a) and (a, a+ 1) for some integer a (See Figure 1b). Visually learning the classification
problem using the parity of a+ b results in a seemingly more complex decision boundary, a point
that has been made earlier regarding the need for more complex boundaries to achieve adversarial
robustness [22, 4]. However, it is worth noting that this complexity is not rooted in any statistical
theory, e.g. the VC dimension of the classes considered in Theorem 1 is essentially the same (even
lower forH by 1). This visual complexity arises purely due to the fact that the linear classifier looks at
a geometric representation of the data whereas the parity classifier looks at the binary representation
of the sum of the nearest integer of the coordinates. In the case of neural networks, recent works [13]
have indeed provided empirical results to support that excessive invariance (eg. rotation invariance)
increases adversarial error.

In this section, we show how the choice of representation is important in the presence of label noise
to learn an adversarially robust classifier. Informally, we show that if the correct representation is
used, then in the presence of label noise, it will be impossible to fit the training data perfectly, but
the classifier that best fits the training data,will have good test accuracy and adversarial accuracy.
However, using an “incorrect” representation, we show that it is possible to find a classifier that has
no training error, has good test accuracy, but has high adversarial error. We posit this as an (partial)
explanation of why classifiers trained on real data (with label noise) have good test accuracy, while
still being vulnerable to adversarial attacks.
Theorem 2. For any n ∈ Z+, there exists a family of distributions Dn over R × {0, 1} and
function classes C,H, such that for any P from Dn, and for any 0 < γ < 1/4, and η ∈ (0, 1/2) if
Sm = {(xi, yi)}mi=1 denotes a sample of size m drawn from P where

m = O

(
max

{
n log

n

δ

(
(1− η)

(1− 2η)
2 + 1

)
,
n

ηγ2
log

(
n

γδ

)})
and if Sm,η denotes the sample where each label is flipped independently with probability η.

(i) the classifier c ∈ C that minimizes the training error on Sm,η, has R(c;P) = 0 and
RAdv,γ(c;P) = 0 for 0 ≤ γ < 1/4.

(ii) there exist h ∈ H, h has zero training error on Sm,η, andR(h;P) = 0. However, for any γ > 0,
and for any h ∈ H with zero training error on Sm,η ,RAdv,γ(h;P) ≥ 0.1.

Furthermore, the required c, h ∈ C,H can be computed in O
(

poly (n) ,poly
(

1
1
2−η

)
,poly

(
1
δ

))
.

We sketch the proof here and present the complete the proof in Appendix B.1; as in Theorem 1 we
will make use of parity functions, though the key point is the representations used. Let X = [0, N ],
where N = 2n, we consider distributions that are supported on intervals (i − 1/4, i + 1/4) for
i ∈ {1, . . . , N − 1} (See Figure 1a), but any such distribution will only have a small number, O(n),
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(a) MULTICLASS (b) NATURAL (c) CIFAR-100. (d) Restricted Imagenet

Figure 2: Assigning a separate class to each sub-population within the original class during training
increases robustness by learning more meaningful representations.

intervals on which it is supported. The true class label is given by a function that depends on the parity
of some hidden subsets S of bits in the bit-representation of the closest integer i, e.g. as in Figure 1a
if S = {0, 2}, then only the least significant and the third least significant bit of i are examined and
the class label is 1 if an odd number of them are 1 and 0 otherwise. Despite the noise, the correct
label on any interval can be guessed by using the majority vote and as a result, the correct parity
learnt using Gaussian elimination. (This corresponds to the class C in Theorem 2.) On the other
hand it is also possible to learn the function as a union of intervals, i.e. find intervals, I1, I2, . . . , Ik
such that any point that lies in one of these intervals is given the label 1 and any other point is given
the label 0. By choosing intervals carefully, it is possible to fit all the training data, including noisy
examples, but yet not compromise on test accuracy (Fig. 1a). Such a classifier, however, will be
vulnerable to adversarial examples by applying Theorem 3. A classifier such as union of intervals (H
in Theorem 2) is translation-invariant, whereas the parity classifier is not. This suggests that using
classifiers, such as neural networks, that are designed to have too many built-in invariances might
hurt its robustness accuracy. In Theorem 2, we present further experimental evidence that neural
networks trained with SGD learn more linear-like (simpler) decision boundaries than is necessary for
obtaining adversarial robustness.

3 Accounting for fine grained sub-populations leads to better robustness

One way to evaluate whether more meaningful representations lead to better robust accuracy is to
use training data with more fine-grained labels (e.g. subclasses of a class); for example, one would
expect that if different breeds of dogs are labelled differently the network will learn features that are
relevant to that extra information. We show both using synthetic data, CIFAR100 [14], and Restricted
Imagenet [32] that training on fine-grained labels does increase robust accuracy.

We hypothesize that learning more meaningful representations by accounting for fine-grained sub-
populations within each class may lead to better robustness. We use the theoretical setup presented
in Figure 1b. However, if each of the circles belonged to a separate class then the decision boundary
would have to be necessarily more complex as it needs to, now, separate the balls that were previously
within the same class. We test this hypothesis with two experiments. First, we test it on the the
distribution defined in Theorem 1 where for each ball with label 1, we assign it a different label (say
α1, · · · , αk) and similarly for balls with label 0, we assign it a different label (β1, · · · , βk). Now, we
solve a multi-class classification problem for 2k classes with a deep neural network and then later
aggregate the results by reporting all αis as 1 and all βis as 0.The resulting decision boundary is
drawn in Figure 2a along with the decision boundary for natural training. Clearly, the margin for the
multi-class model (and thus robustness) is greater than the naturally trained model.

Second, we also repeat the experiment with CIFAR-100 and Restricted Imagenet [32]. For CIFAR-
100, we train a ResNet50 [9] on the fine labels of CIFAR100 and then aggregate the fine labels
corresponding to a coarse label by summing up the logits of the fine classes corresponding to each
coarse class. For restricted imagenet, we use the fine-coarse division mentioned in Table 1. We call
this model the Fine2Coarse model and compare the adversarial risk of this network to a ResNet-50
trained directly on the coarse labels. Note that the model is end-to-end differentiable as the only
addition is a layer to aggregate the logits corresponding to the fine classes pertaining to each coarse
class. Thus PGD adversarial attacks can be applied out of the box. Figure 2c shows that for all
perturbation budgets, Fine2Coarse has smaller adversarial risk than the naturally trained model.
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A Related Work

[21] established that there are concept classes with finite VC dimensions i.e. are properly PAC-
learnable but are only improperly robustly PAC learnable. This implies that to learn the problem with
small adversarial error, a different class of models (or representations) needs to be used whereas for
small natural test risk, the original model class (or representation) can be used. Recent empirical
works have also shown evidence towards this (eg. [25]).

Hanin and Rolnick [8] have shown that though the number of possible linear regions that can be
created by a deep ReLU network is exponential in depth, in practice for networks trained with SGD
this tends to grow only linearly thus creating much simpler decision boundaries than is possible due
to sheer expresssivity of deep networks. Experiments on the data models from our theoretical settings
indeed show that adversarial training indeed produces more “complex” decision boundaries

Jacobsen et al. [12] have discussed that excessive invariance in neural networks might increase
adversarial error. However, their argument is that excessive invariance can allow sufficient changes
in the semantically important features without changing the network’s prediction. They describe
this as Invariance-based adversarial examples as opposed to perturbation based adversarial examples.
We show that excessive (incorrect) invariance might also result in perturbation based adversarial
examples.

Another contemporary work [5] discusses a phenomenon they refer to as Shortcut Learning where
deep learning models perform very well on standard tasks like reducing classification error but fail to
perform in more difficult real world situations. We discuss this in the context of models that have
small test error but large adversarial error and provide and theoretical and empirical to discuss why
one of the reasons for this is sub-optimal representation learning.

B Proofs and Extral Notations for Section 2

In this section, we present the formal proofs to the theorems stated in Section 2 as well as define the
notations that were left undefined.

We formally define the notions of natural (test) error and adversarial error.

Definition 1 (Natural and Adversarial Error). For any distribution D defined over (x, y) ∈ Rd ×
{0, 1} and any binary classifier f : Rd → {0, 1},

• the natural error is
R(f ;D) = P(x,y)∼D [f (x) 6= y] , (1)

• if Bγ (x) is a ball of radius γ ≥ 0 around x under some norm1, the γ-adversarial error is

RAdv,γ(f ;D) = P(x,y)∼D [∃z ∈ Bγ (x) ; f (z) 6= y] , (2)

B.1 Proofs of Section 2

Theorem 1. For some universal constant c, and any 0 < γ0 < 1/
√

2, there exists a family of
distributions D defined on X × {0, 1} where X ⊆ R2 such that for all distributions P ∈ D, and
denoting by Sm = {(x1, y1) , · · · , (xm, ym)} a sample of size m drawn i.i.d. from P ,

(i) For any m ≥ 0, Sm is linearly separable i.e., ∀(xi, yi) ∈ Sm, there exist w ∈ R2, w0 ∈ R s.t.
yi
(
w>xi + w0

)
≥ 0. Furthermore, for every γ > γ0, any linear separator f that perfectly fits

the training data Sm hasRAdv,γ(f ;P) ≥ 0.0005, even thoughR(f ;P)→ 0 as m→∞.
(ii) There exists a function class H such that for some m ∈ O(log(δ−1)), any h ∈ H that perfectly

fits the Sm, satisfies with probability at least 1− δ,R(h;P) = 0 andRAdv,γ(h;P) = 0, for any
γ ∈ [0, γ0 + 1/8].

Proof of Theorem 1. We define a family of distribution D, such that each distribution in D is sup-
ported on balls of radius r around (i, i) and (i+ 1, i) for positive integers i. Either all the balls

1Throughout, we will mostly use the (most commonly used) `∞ norm, but the results hold for other norms.
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around (i, i) have the labels 1 and the balls around (i+ 1, i) have the label 0 or vice versa. Figure 1b
shows an example where the colors indicate the label.

Formally, for r > 0, k ∈ Z+, the (r, k)-1 bit parity class conditional model is defined over
(x, y) ∈ R2 × {0, 1} as follows. First, a label y is sampled uniformly from {0, 1}, then and integer i
is sampled uniformly from the set {1, · · · , k} and finally x is generated by sampling uniformly from
the `2 ball of radius r around (i+ y, i).

In Lemma 1 we first show that a set of m points sampled iid from any distribution as defined above
for r < 1

2
√
2

is with probability 1 linear separable for any m. In addition, standard VC bounds show
that any linear classifier that separates Sm for large enough m will have small test error. Lemma 1
also proves that there exists a range of γ, r such that for any distribution defined with r in that range,
though it is possible to obtain a linear classifier with 0 training and test error, the minimum adversarial
risk will be bounded from 0.

However while it is possible to obtain a linear classifier with 0 test error, all such linear classifiers has
a large adversarial vulnerability. In Lemma 2, we show that there exists a different representation for
this problem, which also achieves zero training and test error and in addition has zero adversarial risk
for a range of r, γ where the linear classifier’s adversarial error was atleast a constant.

Lemma 1 (Linear Classifier). There exists universal constants γ0, ρ, such that for any perturbation
γ > γ0, radius r ≥ ρ, and k ∈ Z+, the following holds. Let D be the family of (r, k)- 1-bit parity
class conditional model, P ∈ D and Sn = {(x1, y1) , · · · , (xn, y1)} be a set of n points sampled
i.i.d. from P .

1) For any n > 0, Sn is linearly separable with probability 1 i.e. there exists a h : (w, w0),
w ∈ R2, w0 ∈ R such that the linear hyperplane x → w>x + w0 separates Sn with
probability 1:

∀ (x, y) ∈ Sn z
(
w>x + w0

)
> 0 where z = 2y − 1

2) Further there exists an universal constant c such that for any ε, δ > 0 with probability 1− δ
for any Sn with n = c 1

ε2 log 1
δ , any linear classifier h̃ that separates Sn hasR(h̃;P) ≤ ε.

3) Let h : (w, w0) be any linear classifier that has R(h;PP ) = 0. Then, RAdv,γ(h;P) >
0.0005.

We will prove the first part for any r < 1
2
√
2

by constructing a w, w0 such that it satisfies the
constraints of linear separability. Let w = (1,−1) , w0 = −0.5. Consider any point (x, y) ∈ Sn
and z = 2y − 1. Converting to the polar coordinate system there exists a θ ∈ [0, 2π] , j ∈ [0, · · · , k]
such that x =

(
j + z+1

2 + rcos (θ) , j + rsin (θ)
)

z
(
w>x + w0

)
= z

(
j +

z + 1

2
+ rcos (θ)− j − rsin (θ)− 0.5

)
w = (1,−1)

>

= z
(z

2
+ 0.5 + rcos (θ)− rsin (θ)− 0.5

)
=

1

2
+ zr (cos (θ)− sin (θ)) |cos (θ)− sin (θ)| <

√
2, z ∈ {−1, 1}

>
1

2
− r
√

2

> 0 r <
1

2
√

2

Part 2 follows with simple VC bounds of linear classifiers.

Let the universal constants γ0, ρ be 0.02 and 1
2
√
2
− 0.008 respectively. Note that there is nothing

special about this constants except that some constant is required to bound the adversarial risk away
from 0. Now, consider a distribution P 1-bit parity model such that the radius of each ball is atleast ρ.
This is smaller than 1

2
√
2

and thus satisfies the linear separability criterion.

Consider h to be a hyper-plane that has 0 test error. Let the `2 radius of adversarial perturbation be
γ > γ0. The region of each circle that will be vulnerable to the attack will be a circular segment with

9



the chord of the segment parallel to the hyper-plane. Let the minimum height of all such circular
segments be r0. Thus, RAdv,γ(h;P) is greater than the mass of the circular segment of radius r0.
Let the radius of each ball in the support of P be r.

Using the fact that h has zero test error; and thus classifies the balls in the support of P correctly and
simple geometry

1√
2
≥ r + (γ − r0) + r

r0 ≥ 2r + γ − 1√
2

(3)

To computeRAdv,γ(h;P) we need to compute the ratio of the area of a circular segment of height r0
of a circle of radius r to the area of the circle. The ratio can be written

A
(r0
r

)
=
cos−1

(
1− r0

r

)
−
(
1− r0

r

)√
2 r0r −

r20
r2

π
(4)

As (4) is increasing with r0
r , we can evaluate

r0
r
≥

2r − 1√
2

+ γ

r
Using (3)

≥ 2−
1√
2
− 0.02

r
γ > γ0 = 0.02

≥ 2−
1√
2
− 0.02

1√
2
− 0.008

> 0.01 r > ρ =
1

2
√

2
− 0.008

Substituting r0
r > 0.01 into Eq. (4), we get that A

(
r0
r

)
> 0.0005. Thus, for all γ > 0.02, we have

RAdv,γ(h;P) > 0.0005.
Lemma 2 (Robustness of parity classifier). There exists a concept class H such that for any γ ∈[
γ0, γ0 + 1

8

]
, k ∈ Z+, P being the corresponding (ρ, k) 1-bit parity class distribution where ρ, γ0

are the same as in Lemma 1 there exists g ∈ H such that

R(g;P) = 0 RAdv,γ(g;P) = 0

Proof of Lemma 2. We will again provide a proof by construction. Consider the following class of
conceptsH such that gb ∈ H is defined as

g
(

(x1, x2)
>
)

=

{
1 if [x1] + [x2] = b (mod 2)

1− b o.w.
(5)

where [x] rounds x to the nearest integer and b ∈ {0, 1}. In Figure 1b, the green staircase-like
classifier belongs to this class. Consider the classifier g1. Note that by constructionR(g1;P) = 0.
The decision boundary of g1 that are closest to a ball in the support of P centered at (a, b) are the
lines x = a± 0.5 and y = b± 0.5.

As γ < γ0 + 1
8 , the adversarial perturbation is upper bounded by 1

50 + 1
8 . The radius of the ball is

upper bounded by 1
2
√
2

, and as we noted the center of the ball is at a distance of 0.5 from the decision
boundary. If the sum of the maximum adversarial perturbation and the maximum radius of the ball
is less than the minimum distance of the center of the ball from the decision boundary, then the
adversarial error is 0. Substituting the values,

1

50
+

1

8
+

1

2
√

2
< 0.499 <

1

2

This completes the proof.

10



Theorem 2. For any n ∈ Z+, there exists a family of distributions Dn over R × {0, 1} and
function classes C,H, such that for any P from Dn, and for any 0 < γ < 1/4, and η ∈ (0, 1/2) if
Sm = {(xi, yi)}mi=1 denotes a sample of size m drawn from P where

m = O

(
max

{
n log

n

δ

(
(1− η)

(1− 2η)
2 + 1

)
,
n

ηγ2
log

(
n

γδ

)})
and if Sm,η denotes the sample where each label is flipped independently with probability η.

(i) the classifier c ∈ C that minimizes the training error on Sm,η, has R(c;P) = 0 and
RAdv,γ(c;P) = 0 for 0 ≤ γ < 1/4.

(ii) there exist h ∈ H, h has zero training error on Sm,η, andR(h;P) = 0. However, for any γ > 0,
and for any h ∈ H with zero training error on Sm,η ,RAdv,γ(h;P) ≥ 0.1.

Furthermore, the required c, h ∈ C,H can be computed in O
(

poly (n) ,poly
(

1
1
2−η

)
,poly

(
1
δ

))
.

Proof of Theorem 2. We will provide a constructive proof to this theorem by constructing a distribu-
tion D, two concept classes C andH and provide the ERM algorithms to learn the concepts and then
use Lemma 3 and 4 to complete the proof.

Distribution: Consider the family of distribution Dn such that DS,ζ ∈ Dn is defined on Xζ ×{0, 1}
for S ⊆ {1, · · · , n} , ζ ⊆ {1, · · · , 2n − 1} such that the support of Xζ is a union of intervals.

supp (X )ζ =
⋃
j∈ζ

Ij where Ij :=

(
j − 1

4
, j +

1

4

)
(6)

We consider distributions with a relatively small support i.e. where |ζ| = O (n). Each sample
(x, y) ∼ DS,ζ is created by sampling x uniformly from Xζ and assigning y = cS (x) where cS ∈ C
is defined below (7). We define the family of distributions D =

⋃
n∈Z+

Dn. Finally, we create DηS,ζ
-a noisy version of DS,ζ , by flipping y in each sample (x, y) with probability η < 1

2 . Samples from
DS,ζ can be obtained using the example oracle EX (DS,ζ) and samples from the noisy distribution
can be obtained through the noisy oracle EXη (DS,ζ)
Concept Class C: We define the concept class Cn of concepts cS : [0, 2n]→ {0, 1} such that

cS (x) =

{
1, if (〈[x]〉b XOR S) is odd.
0 o.w.

(7)

where [·] : R→ Z rounds a decimal to its nearest integer, 〈·〉b : {0, · · · , 2n} → {0, 1}n returns the
binary encoding of the integer, and (〈[x]〉b XOR S) =

∑
j∈S〈[x]〉b [j] mod 2. 〈[x]〉b [j] is the jth

least significant bit in the binary encoding of the nearest integer to x. It is essentially the class of
parity functions defined on the bits corresponding to the indices in S for the binary encoding of the
nearest integer to x. For example, as in Figure 1a if S = {0, 2}, then only the least significant and
the third least significant bit of i are examined and the class label is 1 if an odd number of them are 1
and 0 otherwise.

Concept Class H: Finally, we define the concept class H =
⋃∞
k=1Hk where Hk is the class of

union of k intervals on the real lineHk. Each concept hI ∈ Hk can be written as a set of k disjoint
intervals I = {I1, · · · , Ik} on the real line i.e. for 1 ≤ j ≤ k, Ij = [a, b] where 0 ≤ a ≤ b and

hI (x) =

{
1 if x ∈

⋃
j Ij

0 o.w.
(8)

Now, we look at the algorithms to learn the concepts from C andH that minimize the train error. Both
of the algorithms will use a majority vote to determine the correct (de-noised) label for each interval,
which will be necessary to minimize the test error. The intuition is that if we draw a sufficiently large
number of samples, then the majority of samples on each interval will have the correct label with a
high probability.
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Lemma 3 proves that there exists an algorithm A such that A draws m = O
(
|ζ|2 (1−η)

(1−2η)2 log |ζ|δ

)
samples from the noisy oracle EXη (Ds,ζ) and with probability 1− δ where the probability is over
the randomization in the oracle, returns f ∈ C such thatR(f ;DS,ζ) = 0 andRAdv,γ(f ;DS,ζ) = 0
for all γ < 1

4 . As Lemma 3 states, the algorithm involves gaussian elimination over |ζ| variables and
|ζ| majority votes (one in each interval) involving a total of m samples. Thus the algorithm runs in
O (poly (m) + poly (|ζ|)) time. Replacing the complexity of m and the fact that |ζ| = O (n), the
complexity of the algorithm is O

(
poly

(
n, 1

1−2η ,
1
δ

))
.

Lemma 4 proves that there exists an algorithm Ã such that Ã draws

m > max

{
2 |ζ|2 log

2 |ζ|
δ

(
8

(1− η)

(1− 2η)
2 + 1

)
,

0.1 |ζ|
ηγ2

log

(
0.1 |ζ|
γδ

)}

samples and returns h ∈ H such that h has 0 training error, 0 test error and an adversarial test error of
atleast 0.1. We can replace |ζ| = O (n) to get the required bound on m in the theorem. The algorithm
to construct h visits every point atmost twice - once during the construction of the intervals using
majority voting, and once while accommodating for the mislabelled points. Replacing the complexity
of m, the complexity of the algorithm is O

(
poly

(
n, 1

1−2η ,
1
γ ,

1
δ

))
. This completes the proof.

Lemma 3 (Parity Concept Class). There exists a learning algorithm A such that given access to
the noisy example oracle EXη (DS,ζ), A makes m = O

(
|ζ|2 (1−η)

(1−2η)2 log |ζ|δ

)
calls to the oracle

and returns a hypothesis f ∈ C such that with probability 1− δ, we have thatR(f ;DS,ζ) = 0 and
RAdv,γ(f ;DS,ζ) = 0 for all γ < 1

4 .

Proof. The algorithm A works as follows. It makes m calls to the oracle EX (Dms ) to obtain
a set of points {(x1, y1) , · · · , (xm, ym)} where m ≥ 2 |ζ|2 log 2|ζ|

δ

(
8 (1−η)
(1−2η)2 + 1

)
. Then, it

replaces each xi with [xi] ([·] rounds a decimal to the nearest integer) and then removes du-
plicate xis by preserving the most frequent label yi associated with each xi. For example,
if S5 = {(2.8, 1) , (2.9, 0) , (3.1, 1) , (3.2, 1) , (3.9, 0)} then after this operation, we will have
{(3, 1) , (4, 0)}.

As m ≥ 2 |ζ|2 log 2|ζ|
δ

(
8 (1−η)
(1−2η)2 + 1

)
, using δ2 = δ

2 and k = 8(1−η)
(1−2η)2 log 2|ζ|

δ in Lemma 5

guarantees that with probability 1− δ
2 , each interval will have atleast 8(1−η)

(1−2η)2 log 2|ζ|
δ samples.

Then for any specific interval, using δ1 = 2|ζ|
δ in Lemma 6 guarantees that with probability atleast

1− 2|ζ|
δ , the majority vote for the label in that interval will succeed in returning the de-noised label.

Applying a union bound over all |ζ| intervals, will guarantee that with probability atleast 1− δ, the
majority label of every interval will be the denoised label.

Now, the problem reduces to solving a parity problem on this reduced dataset of |ζ| points (after
denoising, all points in that interval can be reduced to the integer in the interval and the denoised
label). We know that there exists a polynomial algorithm using Gaussian Elimination that finds a
consistent hypothesis for this problem. We have already guaranteed that there is a point in Sm from
every interval in the support of DS,ζ . Further, f is consistent on Sm and f is constant in each of these
intervals by design. Thus, with probability atleast 1− δ we have thatR(f ;DS,ζ) = 0.

By construction, f makes a constant prediction on each interval
(
j − 1

2 , j + 1
2

)
for all j ∈ ζ. Thus,

for any perturbation radius γ < 1
4 the adversarial risk RAdv,DS,′ζ (f) = 0. Combining everything,

we have shown that there is an algorithm that makes 2 |ζ|2 log 2|ζ|
δ

(
8 (1−η)
(1−2η)2 + 1

)
calls to the

EX
(
DηS,ζ

)
oracle, runs in time polynomial in |ζ| , 1

1−2η ,
1
δ to return f ∈ C such thatR(f ;DS,ζ) = 0

andRAdv,γ(f ;DS,ζ) = 0 for γ < 1
4 .
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Lemma 4 (Union of Interval Concept Class). There exists a learning algorithm Ã such that given
access to a noisy example oracle makes m = O

(
|ζ|2 (1−η)

(1−2η)2 log |ζ|δ

)
calls to the oracle and returns

a hypothesis h ∈ H such that training error is 0 and with probability 1− δ,R(f ;DS,ζ) = 0.

Further for any h ∈ H that has zero training error on m′ samples drawn from EXη (DS,ζ) for
m′ > |ζ|

10ηγ2 log |ζ|
10γδ and η ∈

(
0, 12
)

thenRAdv,γ(f ;DS,ζ) ≥ 0.1 for all γ > 0.

Proof of Lemma 4. The first part of the algorithm works similarly to Lemma 3. The algorithm Ã
makes m calls to the oracle EX (Dms ) to obtain a set of points Sm = {(x1, y1) , · · · , (xm, ym)}
where m ≥ 2 |ζ|2 log 2|ζ|

δ

(
8 (1−η)
(1−2η)2 + 1

)
. Ã computes h ∈ H as follows. To begin, let the list of

intervals in h be I andMz = {} Then do the following for every (x, y) ∈ Sm.

1. let z := [x],

2. Let Nz ⊆ Sm be the set of all (x, y) ∈ Sm such that |x− z| < 0.5.

3. Compute the majority label ỹ of Nz .

4. Add all (x, y) ∈ Nz such that y 6= ỹ toMz

5. If ỹ = 1, then add the interval (z − 0.5, z + 0.5) to I .

6. Remove all elements of Nz from Sm i.e. Sm := Sm \ Nz .

For reasons similar to Lemma 3, as m ≥ 2 |ζ|2 log 2|ζ|
δ

(
8 (1−η)
(1−2η)2 + 1

)
, Lemma 5 guarantees that

with probability 1− δ
2 , each interval will have atleast 8(1−η)

(1−2η)2 log 2|ζ|
δ samples. Then for any specific

interval, Lemma 6 guarantees that with probability atleast 1− 2|ζ|
δ , the majority vote for the label in

that interval will succeed in returning the de-noised label. Applying a union bound over all intervals,
will guarantee that with probability atleast 1 − δ, the majority label of every interval will be the
denoised label. As each interval inζ has atleast one point, all the intervals in ζ with label 1 will be
included in I with probability 1− δ. Thus,R(h;DS,ζ) = 0.

Now, for all (x, y) ∈ Mz , add the interval [x] to I if y = 1. If y = 0 then x must lie a interval
(a, b) ∈ I . Replace that interval as follows I := I \ (a, b) ∪ {(a, x), (x, b)}. As only a finite number
of sets with Lebesgue measure of 0 were added or deleted from I , the net test error of h doesn’t
change and is still 0 i.e. R(h;DS,ζ) = 0

For the second part, we will invoke Theorem 3. To avoid confusion in notation, we will use Γ instead
of ζ to refer to the sets in Theorem 3 and reserve ζ for the support of interval of DS,ζ . Let Γ be any
set of disjoint intervals of width γ

2 such that |Γ| = 0.1|ζ|
γ . This is always possible as the total width of

all intervals in Γ is 0.1|ζ|
γ

γ
2 = 0.1 |ζ|2 which is less than the total width of the support |ζ|2 . c1, c2 from

Eq. (9) is

c1 = PDS,ζ [Γ] =
2 ∗ 0.1 |ζ|

2 |ζ|
= 0.1, c2 =

2γ

2 |ζ|
|ζ| = γ

Thus, if h has an error of zero on a set of m′ examples drawn from EXη (DS,ζ) where m′ >
0.1|ζ|
ηγ2 log

(
0.1|ζ|
γδ

)
, then by Theorem 3,RAdv,γ(h;DS,ζ) > 0.1.

Combining the two parts for

m > max

{
2 |ζ|2 log

2 |ζ|
δ

(
8

(1− η)

(1− 2η)
2 + 1

)
,

0.1 |ζ|
ηγ2

log

(
0.1 |ζ|
γδ

)}
it is possible to obtain h ∈ H such that h has zero training error, R(DS,ζ ;h) = 0 and
RAdv,γ(h;DS,ζ) > 0.1 for any γ > 0.
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Lemma 5. Given k ∈ Z+ and a distribution DS,ζ , for any δ2 > 0 if m > 2 |ζ|2 k + 2 |ζ|2 log |ζ|δ2
samples are drawn from EX (DS,ζ) then with probability atleast 1− δ2 there are atleast k samples
in each interval

(
j − 1

4 , j + 1
4

)
for all j ∈ ζ.

Proof of Lemma 5. We will repeat the following procedure |ζ| times once for each interval in ζ and
show that with probability δ

|ζ| the jth run will result in atleast k samples in the jth interval.

Corresponding to each interval in ζ, we will sample atleast m′ samples where m′ = 2 |ζ| k +

2 |ζ| log |ζ|δ2 . If zji is the random variable that is 1 when the ith sample belongs to the jth interval,
then jth interval has atleast k points out of the m′ points sampled for that interval with probability
less than δ2

|ζ| .

P

[∑
i

zji ≤ k

]
= P

[∑
i

zji ≤ (1− δ)µ

]
δ = 1− k

µ
, µ = E

[∑
i

zji

]

≤ exp

(
−
(

1− k

µ

)2
µ

2

)
By Chernoff’s inequality

≤ exp

(
−
(
m′

2 |ζ|
− k +

k2 |ζ|
2m′

))
µ =

m′

|ζ|

≤ exp

(
k − m′

2 |ζ|

)
≤ δ2
|ζ|

where the last step follows from m′ > 2 |ζ| k + 2 |ζ| log |ζ|δ2 . With probability atleast δ
|ζ| , every

interval will have atleast k samples. Finally, an union bound over each interval gives the desired
result. As we repeat the process for all |ζ| intervals, the total number of samples drawn will be atleast
|ζ|m′ = 2 |ζ|2 k + 2 |ζ|2 log |ζ|δ2 .

Lemma 6 (Majority Vote). For a given y ∈ {0, 1}, let S = {s1, · · · , sm} be a set of size m where
each element is y with probability 1 − η and 1 − y otherwise. If m > 8(1−η)

(1−2η)2 log 1
δ1

then with
probability atleast 1− δ1 the majority of S is y.

Proof of Lemma 6. Without loss of generality let y = 1. For the majority to be 1 we need to show
that there are more than m

2 “1”s in S i.e. we need to show that the following probability is less than
δ1.

P
[∑

si <
m1

2

]
= P

[∑
si <

m1

2µ
∗ µ+ µ− µ

]
µ = E

[∑
si

]
= P

[∑
si <

(
1−

(
1− m1

2µ

))
µ

]
≤ exp

(
− (1− 2η)

2

8 (1− η)
2µ

)
By Chernoff’s Inequality

= exp

(
− (1− 2η)

2

8 (1− η)
m

)
∵ µ = (1− η)m

≤ δ1 ∵ m >
8 (1− η)

(1− 2η)
2 log

1

δ1

Theorem 3. Let c be the target classifier, and let D be a distribution over (x, y), such that y = c (x)
in its support. Using the notation PD[A] to denote P(x,y)∼D[x ∈ A] for any measurable subset
A ⊆ Rd, suppose that there exist c1 ≥ c2 > 0, ρ > 0, and a finite set ζ ⊂ Rd satisfying

PD

⋃
s∈ζ

Bpρ (s)

 ≥ c1 and ∀s ∈ ζ, PD
[
Bpρ (s)

]
≥ c2
|ζ|

(9)
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where Bpρ (s) represents a `p-ball of radius ρ around s. Further, suppose that each of these balls
contain points from a single class i.e. for all s ∈ ζ, for all x, z ∈ Bpρ (s) : c (x) = c (z).

Let Sm be a dataset of m i.i.d. samples drawn from D, which subsequently has each label flipped
independently with probability η. For any classifier f that perfectly fits the training data Sm
i.e. ∀ x, y ∈ Sm, f (x) = y, ∀δ > 0 and m ≥ |ζ|

ηc2
log
(
|ζ|
δ

)
, with probability at least 1 − δ,

RAdv,2ρ(f ;D) ≥ c1.

Proof of Theorem 3. From (9), for any ζ and s ∈ ζ,

P(x,y)∼D [x ∈ Bρ (s)] ≥ c2
|ζ|

As the sampling of the point and the injection of label noise are independent events,

P(x,y)∼D [x ∈ Bρ (s) ∧ x gets mislabelled] ≥ c2η

|ζ|
Thus,

PSm∼Dm [∃ (x, y) ∈ Sm : x ∈ Bρ (s) ∧ x is mislabelled] ≥ 1−
(

1− c2η

|ζ|

)m
≥ 1− exp

(
−c2ηm
|ζ|

)

Substituting m ≥ |ζ|
ηc2

log
(
|ζ|
δ

)
and applying the union bound over all s ∈ ζ, we get

PSm∼Dm [∀s ∈ ζ, ∃ (x, y) ∈ Sm : x ∈ Bρ (s) ∧ x is mislabelled] ≥ 1− δ (10)

As for all s ∈ Rd and ∀x, z,∈ Bpρ (s) , ‖x− z‖p ≤ 2ρ, we have that

RAdv,2ρ(f ;D) = PSm∼Dm
[
P(x,y)∼D [∃z ∈ B2ρ (x) ∧ y 6= f (z)]

]
= PSm∼Dm

[
P(x,y)∼D [∃z ∈ B2ρ (x) ∧ c (z) 6= f (z)]

]
≥ PSm∼Dn

P(x,y)∼D

x ∈ ⋃
s∈ζ

Bpρ (s) ∧ {∃z ∈ B2ρ (x) : c (z) 6= f (z)}


= PSm∼Dm

[
P(x,y)∼D

[
∃s ∈ ζ : x ∈ Bpρ (s) ∧ {∃z ∈ Bρ (s) : c (z) 6= f (z)}

]]
= P(x,y)∼D

x ∈ ⋃
s∈ζ

Bpρ (s)

 w.p. atleast 1− δ

≥ c1 w.p. 1− δ

where c is the true concept for the distribution D. The second equality follows from the assumptions
that each of the balls around s ∈ ζ are pure in their labels. The second last equality follows from (10)
by using the x that is guaranteed to exist in the ball around s and be mis-labelled with probability
atleast 1− δ. The last equality follows from Assumption (10).

C Complexity of decision boundaries

When neural networks are trained they create classifiers whose decisions boundaries are much simpler
than they need to be for being adversarially robust. A few recent papers [22, 26] have discussed that
robustness might require more complex classifiers. In Theorem 1 and 2 we discussed this theoretically
and also why this might not violate the traditional wisdom of Occam’s Razor. In particular, complex
decision boundaries does not necessarily mean more complex classifiers in statistical notions of
complexity like VC dimension. In this section, we show through a simple experiment how the
decision boundaries of neural networks are not “complex” enough to provide large enough margins
and are thus adversarially much more vulnerable than is possible.
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(a) Shallow NN (b) Shallow-Wide NN (c) Deep NN (d) Large Margin

Figure 3: Decision boundaries of neural networks are much simpler than they should be.

Coarse Class Fine Classes

Dog Chihuahua, Japanese spaniel, Maltese dog, Pekinese, Shih-Tzu, Blenheim spaniel
Bird cock, hen, ostrich, brambling, goldfinch, house finch

Insect tiger beetle,ladybug,ground beetle, long-horned beetle, leaf beetle, dung beetle
Monkey guenon, patas, baboon, macaque, langur, colobus

Car jeep, limousine,cab, beach wagon, ambulance, convertible
Feline leopard, snow leopard, jaguar, lion, cougar, lynx
Truck tow truck, moving van, fire engine, pickup, garbage truck, police van
Fruit Granny Smith, rapeseed, corn, acorn, hip, buckeye

Fungus agaric, gyromitra, stinkhorn, earthstar, hen-of-the-woods, coral fungus
Boat gondola, fireboat, speedboat, lifeboat, yawl, canoe

Table 1: Fine-grained classes in Restricted Imagenet

We train three different neural networks with ReLU activations, a shallow network (Shallow NN) with
2 layers and 100 neurons in each layer, a shallow network with 2 layers and 1000 neurons in each
layer (Shallow-Wide NN), and a deep network with 4 layers and 100 neurons in each layer. We train
them for 200 epochs on a binary classification problem as constructed in Figure 3. The distribution
is supported on blobs and the color of each blob represent its label. On the right side, we have the
decision boundary of a large margin classifier, which is simulated using a 1-nearest neighbour.

From Figure 3, it is evident that the decision boundaries of neural networks trained with standard
optimizers have far simpler decision boundaries than is needed to be robust (eg. the 1- nearest
neighbour is much more robust than the neural networks.)

Restricted Imagenet Settings There are 60 fine classes and 10 coarse classes with each coarse
class having 6 distinct fine classes in them. The train set size is 77237 and the test set size is 3000.
The fine classes within each coarse are balanced i.e. given a coarse class all the fine classes in it are
equally represented in this dataset.
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