
Learning Compositional Neural Programs for
Continuous Control

Thomas Pierrot
InstaDeep

t.pierrot@instadeep.com

Nicolas Perrin
CNRS, Sorbonne Université
perrin@isir.upmc.fr

Feryal Behbahani
DeepMind

feryal@google.com

Alexandre Laterre
InstaDeep

a.laterre@instadeep.com

Olivier Sigaud
Sorbonne Université

olivier.sigaud@upmc.fr

Karim Beguir
InstaDeep

kb@instadeep.com

Nando de Freitas
DeepMind

nandodefreitas@google.com

Abstract

We propose a novel solution to challenging sparse-reward, continuous control
problems that require hierarchical planning at multiple levels of abstraction. Our
solution, dubbed AlphaNPI-X, involves three separate stages of learning. First,
we use off-policy reinforcement learning algorithms with experience replay to
learn a set of atomic goal-conditioned policies, which can be easily repurposed
for many tasks. Second, we learn self-models describing the effect of the atomic
policies on the environment. Third, the self-models are harnessed to learn recursive
compositional programs with multiple levels of abstraction. The key insight is that
the self-models enable planning by imagination, obviating the need for interaction
with the world when learning higher-level compositional programs. We empirically
show that AlphaNPI-X can effectively learn to tackle challenging sparse manipula-
tion tasks, such as stacking multiple blocks, where powerful model-free baselines
fail.

1 Introduction

Many real-world tasks are naturally decomposed into hierarchical structures. We hypothesize that
learning a variety of skills which can be reused and composed to learn more complex skills is key
to tackling long-horizon sparse reward tasks in a sample efficient manner. Such compositionality,
formalised by hierarchical RL (HRL), enables agents to explore in a temporally correlated manner,
improving sample efficiency by reusing previously trained lower level skills. Unfortunately, prior
studies in HRL typically assume that the hierarchy is given, or learn very simple forms of hierarchy
in a model-free manner. We propose a novel method, AlphaNPI-X, to learn programmatic policies
which can perform hierarchical planning at multiple levels of abstraction in sparse reward continuous
control problems. We first train low-level atomic policies that can be recomposed and re-purposed,
represented by a single goal-conditioned neural network. We leverage off-policy reinforcement
learning with hindsight experience replay [1] to train these efficiently. Next, we learn a transition
model over the effects of these atomic policies, to imagine likely future scenarios, removing the
need to interact with the real environment. Lastly, we learn recursive compositional programs,
which combine low-level atomic policies at multiple levels of hierarchy, by planning over the learnt
transition models, alleviating the need to interact with the environment. This is made possible by

1st NeurIPS workshop on Interpretable Inductive Biases and Physically Structured Learning (2020), virtual.

extending the AlphaNPI algorithm [2] which applies AlphaZero-style planning [3] in a recursive
manner to learn recombinable libraries of symbolic programs.

We show that our agent can learn to successfully combine skills hierarchically to solve challeng-
ing robotic manipulation tasks through look-ahead planning, even in the absence of any further
interactions with the environment and where powerful model-free baselines struggle to get off the
ground.1

2 Problem Definition

> CLEAN_AND_STACK
 > MOVE_ALL_TO_ZONE_ORANGE
 > MOVE_TO_ZONE_0_ORANGE
 > MOVE_TO_ZONE_1_ORANGE
 > STOP
 > STACK_ALL_TO_ZONE_BLUE
 > MOVE_TO_ZONE_2_BLUE
 > STACK_3_2
 > STOP
 > STACK_ALL_TO_ZONE_ORANGE
 > STACK_1_0
 > STOP
 > STOP

Final StateInitial State

Orange Zone

Blue ZoneBlue Zone

Figure 1: Illustrative example of an execution trace for the CLEAN_AND_STACK program. Atomic
program calls are shown in green and non-atomic program calls are shown in blue.

In this paper, we aim to learn libraries of skills to solve a variety of tasks in continuous action
domains with sparse rewards. Consider the task shown in Figure 1 where the agent’s goal is to take
the environment from its initial state where four blocks are randomly placed to the desired final
state where blocks are in their corresponding coloured zones and stacked on top of each other. We
formalize skills and their combinations as programs. An example programmatic trace for solving this
task is shown where the sequence of programs are called to take the environment from the initial state
to the final rewarding state. We specify two distinct types of programs: Atomic programs (shown
in green) are low-level goal-conditioned policies which take actions in the environment for a fixed
number of steps T . Non-atomic programs (shown in blue) are a combination of atomic and/or other
non-atomic programs, allowing multiple possible levels of hierarchies in behaviour.

We base our experiments on a set of robotic tasks with continuous action space. Due to the lack of any
long-horizon hierarchical multi-task benchmarks, we extended the OpenAI Gym Fetch environment
[4] with tasks exhibiting such requirements. We consider a target set of tasks represented by a
hierarchical library of programs, see Table 1. These tasks involve controlling a robotic arm with
7-DOF to manipulate 4 coloured blocks in the environment. Tasks vary from simple block stacking
to arranging all blocks into different areas depending on their colour. Initial block positions on the
table and arm positions are randomized in all tasks. We consider 20 atomic programs that correspond
to operating on one block at a time as well as 8 non-atomic programs that require interacting with 2
to 4 blocks.

PROGRAM ARGUMENTS DESCRIPTION

STACK TWO BLOCKS ID STACK A BLOCK ON ANOTHER BLOCK.
MOVE_TO_ZONE BLOCK ID & COLOUR MOVE A BLOCK TO A COLOUR ZONE.
STACK_ALL_ALTERNATE NO ARGUMENTS STACK ALL BLOCKS WITH COLOR ALTERNATING ORDER.
STACK_ALL_CONSECUTIVE NO ARGUMENTS STACK ALL BLOCKS WITH COLOR CONSECUTIVE ORDER.
STACK_ALL_TO_ZONE_BLUE COLOUR STACK BLUE BLOCKS IN THE BLUE ZONE.
STACK_ALL_TO_ZONE_ORANGE COLOUR STACK ORANGE BLOCKS IN THE ORANGE ZONE.
MOVE_ALL_TO_ZONE_BLUE COLOUR MOVE BLUE BLOCKS TO THE BLUE ZONE.
MOVE_ALL_TO_ZONE_ORANGE COLOUR MOVE ORANGE BLOCKS TO THE ORANGE ZONE.
CLEAN_TABLE NO ARGUMENTS MOVE ALL BLOCKS TO THEIR COLOUR ZONE.
CLEAN_AND_STACK NO ARGUMENTS STACK BLOCKS OF THE SAME COLOUR IN ZONES.

Table 1: Programs library for the fetch arm environment. We obtain 8 non-atomic programs and 20
atomic programs when considering all possible combinations when expending their arguments.

1Videos of agent behaviour are available at: https://sites.google.com/view/alphanpix

2

https://sites.google.com/view/alphanpix

We consider a continuous action space A, a continuous state space S, an initial state distribution ρ
and a transition function T : A× S → S. The state vector contains the positions, rotations, linear
and angular velocities of the gripper and all blocks.

We aim to learn a set of n programs pi, i ∈ {1, . . . , n}. A program pi is defined by its pre-condition
φi : S → {0, 1} which assesses whether the program can start and its post-condition ψi : S → {0, 1}
which corresponds to the reward function here. Each program is associated to an MDP (S,A, T , Ri)
which can start only in states such that the pre-condition φi is satisfied, and where Ri is a reward
function that outputs 1 when the post-condition ψi is satisfied and 0 otherwise. Atomic programs
are represented by a goal-conditioned neural network with continuous action space. Non-atomic
programs use a modified action space: we replace the original continuous action space by a discrete
action space where actions correspond to call programs pi or a STOP action that enables the current
program to terminate and return the execution to its calling program. Atomic programs don’t have a
STOP action, they terminate after T timesteps.

3 AlphaNPI-X

AlphaNPI-X learns to solve multiple tasks by composing programs at different levels of hierarchy.
Given a one-hot encoding of a program and states from the environment, the meta-controller calls
either an atomic program, a non-atomic program or the STOP action. Learning in our system operates
in three stages: first we learn the atomic programs, then we learn a transition model over their effect
and finally we train the meta-controller to combine them. We provide detailed explanation of how
these modules are learned below.

Learning Atomic Programs

Atomic programs are executed by an atomic policy conditioned on the atomic program’s index and
produces continuous actions. To execute an atomic program pi from an initial state s satisfying the
pre-condition φi, we condition the atomic policy on the program’s one-hot encoding and take actions
for T timesteps in the environment to satisfy the atomic program’s post-condition.

We parametrize our atomic policy as a shared goal-conditioned policy using Universal Value Function
Approximators (UVFAs) [5]. UVFAs estimate a value function that does not only generalise over states
but also goals. To accelerate training of this goal-conditioned UVFA, we leverage the "final" goal
relabeling strategy introduced in HER [1]. Past episodes of experience are relabelled retroactively
with goals that are different from the goal aimed for during data collection and instead correspond to
the goal achieved in the final state of the episode. The mappings from state vector to goals is simply
done via extracting the programs whose post-conditions are satisfied in that state. If several programs
post-conditions are satisfied, the program used for goal relabeling is sampled uniformly among these.
In contrary, if no program post-condition is verified, a full-zero encoding is used. We use DDPG [6]
to train the goal-conditioned policy.

The atomic policy is trained from a sparse reward signal where the agent receives 1 if the goal
is satisfied and 0 otherwise. We train the policy with HER and learn to execute atomic programs
sampled uniformly from any state s ∼ ρ. However, the distribution of initial states encountered by
each atomic program may be very different when executing programs sequentially (as will happen
when non-atomic programs are introduced). Thus, we do not reset the environment between episodes
with a probability 0.5, to approximate the real distribution of initial states when atomic programs
are chained together. Hence, the initial state s is either sampled randomly or kept as the last state
observed in the previous episode.

Learning Self-Behavioural Model

After learning a set of atomic programs we learn a transition model over their effects: Ωw : S ×
{1 . . . k} → S, parameterized with a neural network. This module takes as input an initial state and
an atomic program index and the output is the prediction of the environment state obtained when
rolling the policy associated to this program for T timesteps from the initial state. As in [7], we
use an ensemble of fully connected MLPs initialised randomly and train them by minimizing the
mean-squared error to the ground-truth final states. Learning this model enables to make jumpy

3

predictions over the effect of executing an atomic program during search, hence avoiding any further
calls to atomic programs that would each have to perform many actions in the environment.

Learning the Meta-Controller

In order to compose atomic programs together into hierarchical stacks of non-atomic programs, we
use a meta-controller inspired by AlphaNPI [2]. The meta-controller interprets and selects the next
program to execute using neural-network guided Monte Carlo Tree Search (MCTS) [3, 2], conditioned
on the current program index and states from the environment. We train the meta-controller using
the recursive MCTS strategy introduced in AlphaNPI [2]: during search, if the selected action is
non-atomic, we recursively build a new Monte Carlo tree for that program. In AlphaNPI [2], similar
to AlphaZero, during the tree search, future scenarios were evaluated by leveraging the ground-truth
environment, without any temporal abstraction. Instead in this work, we do not use the environment
directly during planning, but replace it by our learnt transition model over the effects of the atomic
programs, the self-behavioural model described in Section 3, resulting in a far more sample efficient
algorithm.

4 Experiments and Results

We first train the atomic policies using DDPG with HER relabelling described in Section 3. Initial block
positions on the table as well as gripper position are randomized. We then train the self-behavioural
model to predict the effect of atomic programs, using a dataset made of 100k episodes collected
with the goal-conditioned policy. We did not reset the environment between two episodes with a
probability 0.5 similar to the atomic program training regime.

To train the meta-controller, we randomly sample from the set of non-atomic programs during training.
We compare two different inferences strategies for evaluation: 1) Rely only on the policy network,
without planning. 2) Plan a full trajectory using the learned transition model (i.e. self-behavioural
model) and commit to it during the full episode (i.e. open-loop planning). Our results indicate that
removing planning significantly reduces performance, particularly for the tasks that require precise
execution of multiple atomic programs sequentially.

PROGRAM NO
PLAN

PLANNING HIERARCHICAL
PPO

MULTITASK
DDPG

MULTITASK
DDPG + HER

CLEAN_TABLE 1± 1 50± 21 0± 0 0.0 0.0
CLEAN_AND_STACK 3± 2 17± 11 1± 1 0.0 0.0
STACK_ALL_ALTERNATE 3± 1 38± 1 0± 0 0.0 0.0
STACK_ALL_CONSECUTIVE 3± 4 32± 5 0± 0 0.0 0.0
STACK_ALL_TO_ZONE_BLUE 49± 23 90± 1 46± 30 0.0 0.0
STACK_ALL_TO_ZONE_ORANGE 59± 8 90± 1 42± 25 0.0 0.0
MOVE_ALL_TO_ZONE_BLUE 61± 8 93± 1 72± 5 0.0 0.0
MOVE_ALL_TO_ZONE_ORANGE 58± 13 92± 1 64± 5 0.0 0.0

Table 2: We compare the success rate (in percentage) of AlphaNPI-X in different inference settings
(No Plan and Planning) as well as the performance of 3 model-free baselines. Each program is
evaluated by executing 100 episodes with randomized environment configuration.

We compare our method to three baselines to illustrate the difficulty for RL methods to solve tasks
with sparse reward signals. First, we implemented a multitask DDPG (M-DDPG) that takes as input the
environment state and a one-hot encoding of a non-atomic program and has continuous action space.
This is similar to our goal-conditioned atomic policy. During training, for each episode a random
program index is selected which defines the reward function. Second, we implemented a M-DDPG +
HER agent which leverages richer goals for non-atomic tasks. While M-DDPG gets conditioned on the
program index, M-DDPG + HER receives the goal in the form of the desired (x, y, z) coordinates for
all objects in the environment as in [8]. This knowledge is not available to AlphaNPI-X. As in HER,
goals are relabelled during training.

We observe that M-DDPG is unable to learn to execute any non-atomic program. It is also the case for
M-DDPG + HER despite having access to the additional privileged goal representations. This shows
that standard exploration mechanisms in model-free agents such as in DDPG, where Gaussian noise is
added to the actions, is very unlikely to lead to rewarding sequences and hence learning is hindered.

4

Finally, we implemented a hierarchical PPO (H-PPO) agent which leverages the pre-trained atomic
policy and its behavioral model. We observe that H-PPO manages to obtain non-zero performance on
the simpler tasks, however despite the access to learned skills and the behaviour model it struggles
to get off the ground for the more complex ones. These results suggest that the combination of pre-
trained atomic policies and the recursive AlphaZero-style planning with multiple levels of hierarchy
leveraged in AlphaNPI-X is required to get off the ground when the reward is sparse and additionally
only a few action sequences can result in successful task completion.

5 Conclusion

In this paper, we proposed AlphaNPI-X, a novel method for constructing a hierarchy of abstract
actions in a rich object manipulation domain with sparse rewards and long horizons. By learning a
self-behavioural model, we leveraged the power of recursive AlphaZero-style look-ahead planning
across multiple levels of hierarchy. Experimental results demonstrated that AlphaNPI-X, using an
abstract imagination-based reasoning, can simultaneously solve multiple complex tasks involving
dexterous object manipulation beyond the reach of model-free methods.

5

References

[1] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
CoRR, abs/1707.01495, 2017.

[2] Thomas Pierrot, Guillaume Ligner, Scott E Reed, Olivier Sigaud, Nicolas Perrin, Alexandre
Laterre, David Kas, Karim Beguir, and Nando de Freitas. Learning compositional neural
programs with recursive tree search and planning. In Advances in Neural Information Processing
Systems 32, pages 14646–14656, 2019.

[3] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering
chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint
arXiv:1712.01815, 2017.

[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016.

[5] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function ap-
proximators. In Francis Bach and David Blei, editors, Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research,
pages 1312–1320, Lille, France, 07–09 Jul 2015. PMLR.

[6] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

[7] Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak
Pathak. Planning to explore via self-supervised world models. arXiv preprint arXiv:2005.05960,
2020.

[8] John B Lanier, Stephen McAleer, and Pierre Baldi. Curiosity-driven multi-criteria hindsight
experience replay. arXiv preprint arXiv:1906.03710, 2019.

6

	Introduction
	Problem Definition
	AlphaNPI-X
	Experiments and Results
	Conclusion

