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Abstract

Deep neural networks have the ability to generalize beyond observed training data.
However, for some applications they may produce output that apriori is known to be
invalid. If prior knowledge of valid output regions is available, one way of imposing
constraints on deep neural networks is by introducing these priors in a loss function.
In this paper, we introduce a novel way of constraining neural network output by
using encoded regions with a loss function based on gradient interpolation. We
evaluate our method in a positioning task where a region map is used in order to
reduce invalid position estimates. Results show that our approach is effective in
decreasing invalid outputs for several geometrically complex environments.

1 Introduction

Two common approaches to improve generalization of deep models involve introducing more diverse
training data and introducing inductive bias through prior knowledge. Lutter et al. [4] show how
Lagrangian mechanics can be encoded as physics priors into a network topology to impose physical
constraints and thereby improving generalization of deep models. Zambaldi et al. [10] demonstrate
how raw pixel data can be transformed to a spatial feature map to introduce relational inductive
bias to a reinforcement learning (RL) agent. One way of encoding prior knowledge as constraints
on neural networks is to introduce a constraining loss function based on these priors. Xu et al. [9]
present a semantic loss function based on symbolic knowledge for semi-supervised classification. An
additional constraining loss can also be seen as learning another task, which can provide inductive
bias and cause the model to generalize better [7][2].

In this work we introduce a novel method of constraining neural network output by using prior
knowledge of valid output regions with a loss function based on gradient interpolation. The region
maps are easy to create even for complex regions, for example by using a standard drawing application,
or simply generating them from existing formats such as images or drawings if available. By encoding
region maps into a loss function, we demonstrate an interpretable approach to include prior knowledge
into deep neural networks (DNN).

We evaluate our method on a static positioning task where the objective is to compute a single
position estimate from several simultaneously taken distance measurements from known positions,
independent of previous or future measurements or estimates. Examples of approaches for static
positioning are iterative least square (ILS)[1], or machine learning methods such as support vector
machines (SVM) and DNN. For example Xiao et al. [8] achieves better results with DNN than with a
SVM. Félix et al. [3] investigates DNN for positioning with supervised and unsupervised training.
In this work we demonstrate our approach based on a DNN for positioning, but the approach is
applicable for any regression task where invalid ouput regions can be represented as a binary matrix.
∗Also with Malmö University

1st NeurIPS workshop on Interpretable Inductive Biases and Physically Structured Learning (2020), virtual.



2 Constraining loss function

The constraining loss function uses the output of the model, Ĥ, and the region map encoded in the
form of a binary matrix Z. The loss is based on where Ĥ is located on Z. As a first step the region
map is created as a binary matrix with pixel value zero for valid regions and one for invalid regions
Z ∈ {0, 1}A×2 . Z is then used to generate a topographic matrix ZC>? where invalid region pixel values
are increased as a function of the distance to the closest allowed region. This conversion is only done
once, before training. The loss function should return a loss from ZC>? corresponding to Ĥ. Further,
we need to consider that the resolution of the ZC>? is limited to the size of the matrix, which might
be less than the resolution of Ĥ. Additionally, the loss needs to have derivatives with respect to Ĥ. We
achieve all these aspects by applying bilinear interpolation for Ĥ on ZC>? . Bilinear interpolation uses
the four points with known values (1), closest to the point with an unknown value (G, H). Starting
with interpolating in the x-direction, then use this result and interpolate in the y-direction to get an
approximate topographic value at (G, H) as (2), with partial derivatives as (3).
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For bilinear interpolation with a topographic matrix ZC>? ∈ RA×2 , the coordinates G and H need to be
normalized according to the size of the matrix. The points for interpolation are then (4). Resulting in
a constraining loss function that outputs a low or zero loss for valid positions and a higher loss for
invalid positions with derivatives negative towards valid positions (5).

[A1, 21] = [bH′c, bG ′c], [A1, 22] = [bH′c, bG ′c + 1]
[A2, 21] = [bH′c + 1, bG ′c], [A2, 22] = [bH′c + 1, bG ′c + 1] (4)
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The default loss and constraining loss functions are combined to form a total loss (6). Here ?
represents the weighting between the losses. The most straight forward approach is to use static
weighting between the losses. A problem is to find the optimal value for ? that avoids overfitting one
loss.

LC>C ( Ĥ, H) = L3 ( Ĥ, H)? + L2 ( Ĥ,ZC>?) (1 − ?) (6)

In this work, we apply an adaptive weighting, where L3 acts as the primary loss while L2 is
introduced over time. Initially ? = 1 resulting in LC>C = L3 . For every epoch, ? is decreased or
increased with step size B, dependent on if the training error is below or above a threshold C. The
threshold C decides how much the model is allowed to optimize for L3 or L2 , while B decides how
fast the weight between the losses change. Both B and C are hyperparameters that need to be tuned for
optimal results.
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3 Experiments

To validate our method we train a DNN for positioning with and without the constraining loss in
three different environments. We are working on this method for real world positioning applications,
where invalid regions often exist in the form of sealed off rooms or buildings. The environments aim
to represent such scenarios but also test the general ability of constraining outputs to geometrically
different regions. We use a DNN as proposed by Félix et al. [3] with seven layers and five hidden
layers of size (=1

ℎ
, =2
ℎ
, =3
ℎ
, =4
ℎ
, =5
ℎ
, ) = (1000, 1000, 500, 100, 10). The input and output layer sizes are

=G = 30 and =H = 2, according to the number of features in the training data and the output position
coordinates. We use Rectified Linear Unit (ReLU) as activation functions [5] and the Mean Squared
Error (MSE) loss function as default loss. Training is done for 5000 epochs with batch size 1024
and learning rate 10−3. The loss balance weighting has step size B = 0.0005 and threshold C = 5. The
code for all experiments are implemented in Python with models, loss functions and training using
PyTorch [6] .

Data is generated with a simple procedure: A sample (G8 , H8) is created by first generating a label
position H8 = (H81, H

8
2) by drawing two samples from a uniform distribution H1, H2 ∼ U(0, 1), 0 and

1 are the maximum coordinates of the area. The the distances are then calculated {31, ..., 3=:? }
to all known positions {(?1 9 , ?2 9 ); 9 = 1, ..., =: ?)} and Gaussian noise is added, 36 9 = 3 9 + / 9 ,
/ ∼ N(`, f2). This is combined to form the features G8 = (361, ?11, ?21, ...36=:? , ?1=:? , ?2=:? ).
As a last step, the =3A>? largest distances are removed, =3A>? ∼ U(3, =: ?). This is done to better
generalize to real scenarios where known positions at large distances often are out of reach. The
training data cover all valid and invalid positions, such as A = {(.1, .2) |.1 ∈ R[0, 0], .2 ∈ R[0, 1]}.
The validation and test data has positions only in valid areas, such as B = {(.1, .2) | (.1, .2) ∈
Z,Z == 0}. All three data sets consists of 100k samples, with =: ? = 10, ` = 0 and f = 5.

We evaluate the models by running inference on the test data set. The positioning error is calculated
as the !2 norm between the model inference output and label of the data. Invalid output ratio is
calculated as the percentage of the model inference output that are at invalid positions.

4 Results

Results for all experiments are visualised in Figure 1. The inference output on the test data set is
plotted in white, the dark regions represent the invalid regions where we want to avoid outputs. The
evaluation results are summarized in Table 1. Figure 2 shows training curves for experiment 1 and 2.
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Figure 1: Result plots for experiments 1,3,5 (baseline) and 2,4,6 (constrained).
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From plots 1,3 and 5 in Figure 1, we see that the baseline method produce outputs in invalid regions
on the test data. In plots 2, 4 and 6, it’s clear that the constraining loss effectively reduces the
number of outputs in invalid regions. The different environments introduce varying challenges for the
constraining task. The circle and dual pentagons prove to be the easiest with an almost perfect result,
while the squares prove to be more challenging. One interesting observation is the aberrations in the
uniform distribution of the constrained outputs. Especially the squares suffer from this side effect.
We can also see that some invalid outputs still exists. These could be further reduced by weighting
the constraint harder by adjusting the C and B parameters, but it would also result in more aberration.

The evaluation results in Table 1 show at least one order of magnitude decrease of invalid outputs for
all three environments. The positioning error improves for the circle environment, while we observe
no improvement and an increase in the variance for the pentagon and the squares. Our conclusion
is that, while the reduction of invalid outputs lead to a decrease in positioning error, an increase in
abberations has a negative impact.

Table 1: Positioning error and invalid outputs

Experiment Environment Method Position error m (SD) Invalid output % (SD)

1 squares baseline 5.19 (0.06) 8.94 (0.16)
2 squares constrained 5.29 (0.22) 0.79 (0.14)
3 circle baseline 5.15 (0.08) 1.72 (0.05)
4 circle constrained 4.57 (0.07) 0.01 (0.01)
5 pentagons baseline 5.39 (0.25) 3.79 (0.10)
6 pentagons constrained 5.37 (0.59) 0.07 (0.02)

To further analyze the workings of our loss function we look at training curves for experiment 1 and
2. From the ? value graph we see how ? starts decreasing with step B as the training position error
reach C. At the same time, invalid output error start to decrease compared to the baseline. Based
on these curves it is possible to examine and tune ? with B and C to balance the constraining effect
against the positioning task.

p value train - position error       validate - invalid output error

Figure 2: Training curves for experiments 1 (orange - baseline) and 2 (blue - constrained).

5 Conclusion and Future work

We introduced a novel way of constraining neural network output by using prior knowledge of valid
output regions with a loss function based on gradient interpolation. We presented experiments validat-
ing our method in the positioning task. Results demonstrate that our method can be used to effectively
reduce invalid outputs. The region maps are easily generated, the induced bias is interpretable and the
loss can be tuned towards a stronger or weaker constrain. Future work include improved approaches
for loss weighting as well as investigating the aberration side effect. Additionally, it would be
interesting to apply our method on DNN models for tasks other than positioning.
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