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Abstract

A common assumption of novelty detection is that the distribution of both “normal"
and “novel" data are static. This, however, is often not the case—for example
scenarios where data evolves over time or where the definition of normal and novel
depends on contextual information both lead to changes in these distributions. This
can lead to significant difficulties when attempting to train a model on datasets
where the distribution of normal data in one scenario is similar to that of novel data
in another scenario. In this paper we propose a context-aware approach to novelty
detection for deep autoencoders to address these difficulties. We create a semi-
supervised network architecture that utilises auxiliary labels to reveal contextual
information and allow the model to adapt to a variety of contexts in which the
definitions of normal and novel change. We evaluate our approach on both image
data and real world audio data displaying these characteristics and show that the
performance of individually trained models can be achieved in a single model.

1 Introduction

Novelty, or anomaly, detection is often framed as a task where the definition of “normal", or data that
has been “seen" before, is static. Furthermore, the nature of what is “novel" is often also assumed
to be fixed. In real world scenarios, however, these assumptions are often invalid: the nature of
normality and novelty may evolve as a function of time or depend on the context in which data is
observed [2]. This paper addresses the latter scenario. There are many situations where an event that
is normal in one context, may be considered novel in another. For example the sound of an ice-cream
truck on a sunny day versus the same sound in the middle of the night. The notion of context is
particularly useful when one considers the lack of labelled data inherent in novelty detection. In many
novelty detection scenarios it is not practical to build individualized models for each context and so it
would be useful to have an effective way to build novelty detection models that can effectively utilize
data from multiple contexts to build a single, accurate model. Such a model would exploit two types
of features: behavioral features that are ubiqitous across all contexts and contextual features that
depend on context [2]. This motivates a semi-supervised approach where the detection algorithm is
conditioned on context, and therefore context-aware.

In this paper we propose the Context-Aware Novelty Detection autoEncoder (CANDE), a novel
approach to detecting contextual anomalies based on conditioned autoencoder neural networks. In
experiments using two datasets, including a large real world dataset, we show that shifts in context
degrade detection but that a single CANDE model can alleviate this degradation, removing the
necessity for individual models to be trained for each context.

2 Related Work

There is a significant amount of existing work using deep learning for novelty detection. Golan et al.
[4] use a discriminative learning strategy for detecting anomalies in images by training a network
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to recognise transformations applied to images, and flagging anomalies when these transformations
cannot be recognised. Pidhorskyi et al. [11] combined adversarial losses with reconstruction error
in order to compute the likelihood of samples being generated from an inlier distribution. Gong et
al. [5] use a memory augmented network to learn a fixed number of sparse representations of the
normal data via a content addressable memory and retrieve these representations at test time via an
attention mechanism. This way, only normal representations learned at training time can be retrieved,
resulting in a poor reconstruction error for anomalous queries. Nguyen et al. [8] addressed the issue
of high likelihood being assigned to anomalous regions using a variational autoencoder that learned
multi-model distributions using multiple hypothesis networks [14] along with a discriminator network
that prevented the network from assigning high likelihood to non-existent input regions.

There is little research on deep contextual novelty detection. Shulman [16] used variational autoen-
coders to reconstruct contextual and behavioural features separately. A continual learning approach
using generative replay [15] as a data augmentation strategy was taken by Wiewel et al. [17] for
streaming data scenarios where past data is unavailable when retraining models on new incoming
data. Araya et al. [1] used historical sensor data alongside contextual features with autoencoders
for novelty detection in smart buildings. Komatsu et al. [6] proposed a scene-dependent acoustic
event detector. This used I-vectors, a low-dimensional embedding based on factor analysis of the
difference between a Universal Background Model and a short audio segment-specific model, as an
additional input to a WaveNet [9] model. This work is perhaps closest the proposal in this paper. Our
proposed approach however, is not domain-specific and differs in both the method of embedding and
the conditioning mechanism used.

3 Context-Aware Novelty Detection Autoencoder

We propose the Context-Aware Novelty Detection autoEncoder (CANDE), an approach that dynami-
cally adapts the output of a standard deep novelty detector to contextual features. The advantage of
this architecture is that it allows a single model to be trained for disparate contexts. The architecture
includes two components: a deep autoencoder and a contextual encoding function. We define a
deep autoencoder with an encoder network f : Rd → Rm, with network weights θe where m is
the dimension of the encoding z; and a decoder network g : Rm → Rd with network weights θd.
To encourage this autoencoder to adapt to contextual information, and thereby modulate its output
depending on context, the network is conditioned using an auxiliary context label. The auxiliary
context label denotes some form of partitioning of the dataset which indicates the context from which
the data was derived. Context is recorded in a training dataset through a set of auxiliary labels,
〈Ci〉i∈I . Crucially, these labels do not contain any information about the nature of anomalies but only
serve as a more fine-grained representation of each normal example used to train the network. To
condition the deep autoencoder in CANDE, we use the Feature-wise Linear Modulation (FiLM) [10]
network conditioning strategy.1. This is illustrated in Figure 1. An affine transformation is applied the
kth layer of the network, denoted by zzzk ∈ Rq, using scaling and shifting factors γγγk and βββk. These
factors are derived using the context vector hhhc ∈ Rp as follows:

γγγk = hhhcWγk + bbbγk (1) βββk = hhhcWβk + bbbβk (2)

where Wγk and Wβk are weight matrices corresponding to γγγk and βββk, and bbbγk and bbbβk represent
their respective bias vectors. The context vector hhhc can be a one-hot-encoding of the context label or
a more complex representation, such as an embedding. The transformations in equations 1 and 2 are
performed such that their output will be of dimension q, thus aligning with that of the layer to be
conditioned, zzzk. Conditioning is performed using an element-wise affine transformation [10]:

zzz′k = γγγk � zzzk + βββk (3)

After this transformation, the output of this layer, zzz′k, is passed through a ReLU [3] non-linearity.
With conditioning, the encoder and decoder network of the autoencoder, f and g, are now not only
functions of their inputs, xxx and zzz′ respectively, and their learned parameters, but also hhhc:

zzz′ = f(xxx,hhhc; θ
e) (4) xxx′ = g(zzz′,hhhc; θ

d) (5)

1This layer-by-layer conditioning is also in contrast with a previous approach to autoencoder conditioning
proposed by [13] where simply the layer before the "bottleneck" is conditioned.
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Figure 1: For a layer k, a label corresponding to the context of a particular example is transformed
according to Equations 1 and 2. The conditioned layer corresponds to the layer after being scaled by
γk and shifted by βk. These operations occur at each layer in the network.

4 Experiments

We use two datasets in our experiments: a novelty detection dataset based on the MNIST dataset
and the MIMII dataset, a large dataset capturing a real-world novelty detection scenario using audio
recorded from industrial machines.

MNIST: We replicate contextual novelties artificially using the MNIST dataset [7]. This is done
in order to mimic the phenomenon of different contexts in novelty detection in a controlled setting
where we can observe the effects of conditioning more clearly. The MNIST dataset is partitioned
into different “contexts". A context denotes a set of classes from the dataset. This set of classes is
considered “normal" for that context. Let 〈Ci〉i∈I denote a set of different contexts in dataset D,
where ∀i, j ∈ I : i 6= j ⇒ Ci ∩ Cj = ∅. To simulate contextual anomalies, we then relabel data
as being ‘normal’ or ‘novel’ and create scenarios where in one context images of a specific digit
are ‘novel’, whereas in another context images of the same digit are considered ‘normal’. This is
illustrated in Figure 2.

C1 C1 C1 C2 C3 C1 C3 C 2

Normal Normal Novel NovelNormal Normal Normal Novel

Figure 2: Example of MNIST dataset configuration. C1, C2 and C2 refer to Context 1, 2 and 3.

MIMII: As an example of a real-world novelty detection problem, we use the recently proposed
MIMII public dataset [12] which consists of industrial machine sounds recorded from a number of
different machine types and models. The task requires novel audio to be detected in 10-second audio
segments, where a novel audio segment might indicate a machine about to fail. As in the original
benchmarks in [12], in our experiments we use a representation of audio segments that consists of
five frames of 64 log-mel spectrogram filters derived from the first channel of audio with a frame size
of 1,024 and a hop-length of 512. In the public MIMII dataset four different types of machine were
recorded: ‘valve’, ‘pump’, ‘fan’ and ‘slide rail’. The machine types and models define the different
contexts in this scenario. Recordings from four different models of each machine are included.

For all autoencoder models mean squared error (MSE) is used as the cost function. To calculate a
novelty score, the MSE is calculated between a test example, xi, and its reconstruction, x̂i. We base
our evaluation on the Area Under the Receiver Operator Characteristic (ROC) Curve (AUC). This
measures the ability of the models to generate accurate novelty scores without requiring a novelty
classification threshold to be set. Three different types of models are compared in our experiments:

Individual Models: For each context, an individual autoencoder model was trained in order to
ascertain the best performance possible given a model trained on a particular context without intrusion
of other normal contexts.
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Unconditioned Combined Models: An Unconditioned Combined Model takes all data from all
contexts and combines them to train a single novelty detection model. In the case of MNIST this
means that, in the test set, there will be instances where two examples that are drawn from the same
distribution (for instance two "0" digits) will have opposite labels. This represents an extreme overlap
between normal and novel distributions. In the case of the MIMII data, this effect is more subtle, as
the combined dataset simply includes examples from all machine models. We use unconditioned
combined models as a benchmark against which to compare conditioned models.

One-hot-encoded CANDE Combined Models: A one-hot-encoded vector containing the ID of
each context was used for conditioning in the CANDE models used in this experiment.

5 Results & Conclusion

Table 1: Each model was trained and evaluated with ten different random weight initializations for
MNIST and three for the MIMII dataset. (a) AUC for MNIST dataset with three artificially created
contexts. (b) AUC shows results for the MIMII dataset. AUCs are calculated for each machine type
and ID and averaged over three different signal-to-noise ratios.

(a) (b)

Normal
digits

Novel
digit

AE separate
(reference)

AE
uncond.

CANDE
one hot

0, 1, 2 3 0.945 0.609 0.921
3, 4, 5 6 0.944 0.491 0.916
6, 7, 8 0 0.935 0.518 0.893

Model ID AE separate
(reference)

AE
uncond.

CANDE
one hot

fan

00 0.663 0.614 0.647
02 0.850 0.747 0.845
04 0.748 0.714 0.764
06 0.930 0.773 0.904

pump

00 0.609 0.466 0.626
02 0.519 0.426 0.430
04 0.950 0.737 0.938
06 0.805 0.647 0.775

slider

00 0.973 0.968 0.964
02 0.860 0.796 0.847
04 0.765 0.755 0.840
06 0.625 0.668 0.636

valve

00 0.540 0.362 0.507
02 0.619 0.647 0.635
04 0.625 0.504 0.594
06 0.651 0.565 0.590

Table 1 (a) shows the performance of the different models trained on MNIST. The separate autoen-
coder models trained for each context perform very well, however, there is a huge degradation in
performance when the combined model is trained without conditioning. This is not surprising given
the degree of overlap between the novel and normal classes in the three different contexts. Comparing
the results of CANDE to the unconditioned combined model shows the clear improvement provided
by contextual conditioning, and demonstrates that performance similar to that achieved with three
separate models is possible using a single model with conditioning.

The MIMII dataset provides a more realistic view of novelty detection in real world scenarios with
data arising from a number of sources. Table 1 (b) shows the results on the MIMII dataset. The need
for conditioning is clearly illustrated by the degradation between the performance of the separate
models and the performance of the combined models without conditioning, though not as extreme
as in MNIST. In all but a few cases, CANDE models outperform unconditioned models. We have
therefore been able to show that context-aware architectures clearly outperform their unconditioned
counterparts in nearly all cases, especially where there is a high degree of overlap between normal
and novel labels. The results from both datasets demonstrate that this architecture can recover much
of the performance lost by training a single model on all data combined and in some cases can even
out-perform individually trained models.
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