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Abstract

From CNNs to attention mechanisms, encoding inductive biases into neural net-
works has been a fruitful source of improvement in machine learning. Auxiliary
losses are a general way of encoding biases, helping networks learn better repre-
sentations by adding extra terms to the loss function. However, being minimized
on the training data, they suffer from the same generalization gap as regular task
losses. Moreover, by changing the loss function, the network is optimizing a
different objective than the one we want. In this work we solve both problems:
first, we note that, after receiving an input but before making a prediction, we can
fine-tune our models on any unsupervised objective. We call this process tailoring,
because we customize the model to each input. Second, we formulate a nested
optimization (similar to those in meta-learning) and train our models to perform
well on the task loss after adapting to the tailoring loss. The advantages of tailoring
and meta-tailoring are discussed theoretically and demonstrated empirically.

1 Introduction
The key to successful generalization in machine learning is the encoding of useful inductive biases.
A variety of mechanisms, from parameter tying to data augmentation, have proven useful, but there
is no systematic strategy for designing these biases. Auxiliary losses are a paradigm for encoding
a wide variety of biases by adding an extra term to the task loss and minimizing it over the training
data. However, they have two major downsides:

1. Auxiliary losses are only minimized at training time, but not for the query points. This
causes a generalization gap between training and testing, in addition to that of the task loss.

2. By minimizing the sum of the task loss plus the auxiliary loss, we are optimizing a different
objective than the one we care about (only the task loss).

In this work we propose a solution to each problem:

1. We use ideas from transductive learning to minimize the auxiliary loss at the query by
running an optimization at prediction time, eliminating the generalization gap for the
auxiliary loss. We call this process tailoring, because we customize the model to each query.

2. We use ideas from meta-learning to learn a model that performs well on the task loss
assuming that we will be optimizing the auxiliary loss. This meta-tailoring effectively trains
the model to leverage the unsupervised tailoring loss to minimize the task loss.

Tailoring a predictor In classical supervised learning, an algorithm consumes a training dataset
of input-output pairs, ((xi, yi))

n
i=1, and produces a set of parameters θ̂ by minimizing a supervised

loss
∑n
i=1 Lsup(fθ(xi), yi) and, optionally, an unsupervised auxiliary loss

∑n
i=1 Lunsup(θ, xi). These

parameters specify a hypothesis fθ̂(·) that, given a new input x, generates an output ŷ = fθ̂(x). This
problem setting misses a substantial opportunity: before the learning algorithm sees the query point
x, it has distilled the data down to a set of parameters, which are frozen during inference, and so it
cannot use new information about the particular x that it will be asked to make a prediction for.
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Figure 1: Comparison of several learning settings with offline computation in the orange boxes
and online computation in the green boxes, with tailoring in blue. For meta-tailoring training,
τ(θ,Ltailor, x) = arg minθ′≈θ Ltailor(x, θ′) represents the tailoring process resulting in θx.
Vapnik recognized an opportunity to make more accurate predictions when the query point is known,
in a framework that is now known as transductive learning [Vapnik, 1995, Chapelle et al., 2000]. In
transductive learning, a single algorithm consumes both labeled data, ((xi, yi))

n
i=1, and a set of input

points for which predictions are desired, (x(j))j , and produces predicted outputs (ŷ(j))j for each of
the queries, as illustrated in the top row of figure 1. In general, however, we do not know queries a
priori, and instead we want an inductive rule that makes predictions on-line, as queries arrive. To
obtain a prediction function from a transductive system, we would have to encapsulate the entire
learning procedure inside the prediction function. This strategy would achieve our objective of taking
x into account at prediction time, but would be computationally much too slow.

We observe that this strategy for combining induction and transduction would perform very similar
computations for each prediction, sharing the same training data and objective. We can use ideas
from meta-learning to find a shared “meta-hypothesis” that can then be efficiently adapted to each
query. As shown in the third row of figure 1, we first run regular supervised learning to obtain
parameters θ̂; then, given a query input x, we fine-tune θ̂ on an unsupervised loss (Ltailor) to obtain
customized parameters θx and use them to make the final prediction: fθx(x). We call this process
tailoring, because we adapt the model to each particular input for a customized fit. Notice that
tailoring optimizes the loss at the query point, eliminating the generalization gap on the auxiliary loss.

Meta-tailoring Since we will be applying tailoring at prediction time, it is natural to anticipate
this adaptation during training, resulting in a two-layer optimization similar to those used for meta-
learning. Because of this similarity, we call this process, illustrated in the bottom row of figure 1,
meta-tailoring. Now, rather than letting θ̂ be the direct minimizer of the supervised loss, we set it to
θ̂ ∈ arg minθ

∑n
i=1 Lsup(fτ(θ,Ltailor,xi)(xi), yi). Notice that by optimizing this nested objective, the

outer process is now optimizing the only objective we care about, Lsup, instead of a proxy combination
of Lsup and Lunsup. At the same time, we are learning to leverage the unsupervised tailoring losses in
the inner optimization to affect the model before making the final prediction.

Losses for tailoring Tailoring can be used any time we have an unsupervised loss related to our
task; although we focus on supervised learning, tailoring can also be applied in reinforcement
learning.There are many types of tailoring losses that may be useful:
Losses enforcing constraints satisfied by the correct predictions, such as conservation of momentum
and energy when learning a physics model or symmetry under specific transformations.
Losses that help learn better representations, such as the contrastive losses [Hadsell et al., 2006] , or
learning to predict one part of the input from another [Mirowski et al., 2016].
Losses informed by theoretical guarantees. The guarantees of many theorems depend on unsuper-

vised quantities, such as smoothness or distance to the prediction boundary. By optimizing such
quantities on the query, or on the surrounding area, we can get better guaranteed performance.
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Contributions In summary, our contributions are the following:
1. Introducing tailoring, a new framework for encoding inductive biases by minimizing unsuper-

vised losses at prediction time, with theoretical guarantees and broad potential applications.

2. Formulating meta-tailoring, which adjusts the outer objective to optimize only the task loss.

3. Showing (meta-)tailoring’s ability to encode conservation laws in a physics prediction task.

This workshop work is part of a larger paper, which has other contributions(added in the appendix for
completeness): theoretical guarantees for tailoring contrastive losses (app. C), empirical improve-
ments in certified adversarial examples (app. H) and model-based reinforcement learning (app. J),
and a new meta-learning algorithm that allows us to make meta-tailoring efficient(app. B). We also
detail related work in appendix A.

2 Theoretical motivations of meta-tailoring
In this section, we study potential advantages of meta-tailoring from the theoretical viewpoint,
providing guarantees for any tailoring loss assuming the existence of a function ϕ relating the
tailoring loss and the task loss. In appendix C, we show such function exists for contrastive learning.

Definition 1. Let S = ((xi, yi))
n
i=1 and S′ = ((x′i, y

′
i))

n
i=1 be any two training datasets that

differ by a single point. Then, a meta-tailoring algorithm S 7→ fθx,S (x) is uniformly ζ-stable if
∀(x, y) ∈ X × Y, |Lsup(fθx,S (x), y)− Lsup(fθx,S′ (x), y)| ≤ ζ

n .

Theorem 1. Let ϕ be any function such that Ex,y[Lsup(fθ(x), y)] ≤ Ex[ϕ(Ltailor(x, θ))]. Let S 7→
fθx,S (x) be a uniformly ζ-stable meta-tailoring algorithm. Then, for any δ > 0, with probability
at least 1 − δ over an i.i.d. draw of n i.i.d. samples S = ((xi, yi))

n
i=1, the following holds: for

any κ ∈ [0, 1], Ex,y[Lsup(fθx,S (x), y)] ≤ κEx
[
(ϕ ◦ Ltailor)(x, θx,S)

]
+ (1 − κ)J , where J =

1
n

∑n
i=1 Lsup(fθxi,S

(xi), yi) + ζ
n + (2ζ + c)

√
(ln(1/δ))/(2n), and c is the upper bound on the

per-sample loss as Lsup(fθ(x), y) ≤ c.

In the case of regular inductive learning we get a bound of the exact same form, except that we have
a single θ instead of a θx tailored to each input x. These differences are marked in bold green in
Definition 2 and Theorem 1. Theorem 1 shows the benefits of meta-tailoring through its effects on
two factors: the expected unlabeled loss Ex[ϕ(Ltailor(x, θx,S))] and uniform stability ζ.

It is important to note that meta-tailoring can directly minimize the expected unlabeled loss
Ex[ϕ(Ltailor(x, θx,S))], whereas classic induction can only minimize its empirical version, which
results in the additional generalization error on the difference between the expected unlabeled loss
and its empirical version. For example, if ϕ is monotonically increasing and Ltailor(x, θ) represents
the physical constraints at each input x (as in the application in section 3), then classic induction
requires the physical constraints of neural networks at the training points to generalize to the phys-
ical constraints at unseen (e.g., testing) points. Meta-tailoring avoids this requirement by directly
minimizing violations of the physical constraints at each point at prediction time.

Another potential benefit of meta-tailoring can be understood through the improvement in the
parameter stability ζθ defined such that ∀(x, y) ∈ X ×Y, ‖θx,S− θx,S′‖ ≤ ζθ

n , for all S, S′ differing
by a single point. In the case of the meta-tailoring method of θx,S = θ̂S − λ∇Ltailor(x, θ̂S) as in
equation (1) (where θ̂S is the θ̂ returned with the S), we can obtain an improvement on the parameter
stability ζθ if∇Ltailor(x, θ̂S) can pull θ̂S and θ̂S′ closer so that ‖θx,S − θx,S′‖ < ‖θ̂S − θ̂S′‖, which
is ensured, for example, if ‖ · ‖ = ‖ · ‖2 and cos(v1, v2)‖v1‖‖v2‖ >

1
2 where cos(v1, v2) is the cosine

similarity of v1 and v2, with v1 = θ̂S − θ̂S′ , v2 = λ(∇Ltailor(x, θ̂S)−∇Ltailor(x, θ̂S′)) and v2 6= 0.
Here, the uniform stability ζ and the parameter stability ζθ are closely related as ζ ≤ Cζθ, where C is
the upper bound on the Lipschitz constants of the maps θ 7→ Lsup(fθ(x), y) over all (x, y) ∈ X × Y
under the norm ‖ · ‖, since |Lsup(fθx,S (x), y)− Lsup(fθx,S′ (x), y)| ≤ C‖θx,S − θx,S′‖ ≤ Cζθ

n .

3 Experiments: tailoring to impose symmetries at prediction time
During training, we often regularize our networks to satisfy certain criteria; however, this does not
guarantee that these criteria will be satisfied outside the training dataset [Suh and Tedrake, 2020].
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Method loss relative

Inductive learning .041 -
Opt. output(50 st.) .041 (0.7 ± 0.1)%
6400-spl. TTT(50st.) .040 (3.6 ± 0.2)%

Tailoring(1 step) .040 (1.9 ± 0.2)%
Tailoring(5 st.) .039 (6.3 ± 0.3)%
Tailoring(10 st.) .038 (7.5 ± 0.1)%
Meta-tailoring(0 st.) .030 (26.3 ± 3.3)%
Meta-tailoring(1 st.) .029 (29.9 ± 3.0)%
Meta-tailoring(5 st.) .027 (35.3 ± 2.6)%
Meta-tailoring(10 st.) .026 (36.0 ± 2.6)%

Table 1: Test MSE loss for different methods; the
second column shows the relative improvement
over basic inductive supervised learning. The test-
time training (TTT) baseline uses a full batch of
6400 test samples to adapt, not allowed in regular
SL. With a few gradient steps, tailoring signifi-
cantly over-performs all baselines. Meta-tailoring
improves even further, with 35% improvement.

Figure 2: Optimization at prediction time on the
planet data; each path going from right to left as
we minimize the physics tailoring loss. We use
a small step size to illustrate the path. Tailoring
and the two baselines share only differ in their
test-time computations, thus sharing their starts.
Meta-tailoring has a lower starting loss, faster op-
timization, and no overfitting to the tailoring loss.

One option is to construct ad hoc neural network architectures to exploit constraints for important
problems, such as using Hamiltonian neural networks [Greydanus et al., 2019] to impose energy
(but not momentum) conservation. Tailoring instead provides a general solution to this problem
by adapting the model at prediction time to satisfy the criteria. In meta-tailoring, we also train the
system to make good predictions after satisfying the constraint.

We demonstrate this use of tailoring by enforcing physical conservation laws to more accurately pre-
dict the evolution of a 5-body planetary system governed by gravitational forces. This prediction prob-
lem is challenging, asm-body systems become chaotic form > 2. We generate a supervised-learning
dataset with positions, velocities and masses of all 5 bodies as inputs and the changes in position and
velocity at the next time-step as targets. Appendix K describes the dataset in greater detail.

We use a 3-layer feed-forward network and apply a tailoring loss based on the laws of conservation
of energy and momentum by taking the original predictions and adapt our model using the L1 loss
between the initial and final energy and momentum of the whole system. Ensuring this conservation
can improve predictions, but notice that minimizing the tailoring loss alone does not guarantee good
predictions: outputting the input conserves energy and momentum perfectly, but is not correct.

Tailoring adapts some parameters in the network in order to improve the tailoring loss. An alternative
for enforcing conservation would be to adapt the output y value directly. Table 1 compares the
predictive accuracy of inductive learning to direct output optimization as well as tailoring and meta-
tailoring, using varying numbers of gradient steps. We observe that tailoring is more effective than
adapting the output, as the parameters provide a prior on what changes are more natural. Interestingly,
meta-tailoring without any query-time tailoring steps already performs much better than the original
model, even though both models have almost the same number of parameters and can overfit the
dataset.We conjecture meta-tailoring training is adding an inductive bias that guides optimization
towards learning a more generalizable model, even without tailoring at test time. Finally, plot 2 shows
the prediction-time optimization paths for different methods.

4 Conclusion

We have presented tailoring, a simple way of embedding a powerful class of inductive biases
into models, by minimizing unsupervised objectives at prediction time. The framework is broadly
applicable, as one can vary the model, the unsupervised loss and the task loss. Currently, most
unsupervised or self-supervised objectives are optimized in task-agnostic ways; instead, meta-
tailoring provides a generic way to make them especially useful for particular applications. It does so
by learning how to best leverage the unsupervised loss to perform well on the final task we care about.
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A Related work
There are other learning frameworks that perform optimization at prediction time, such as
energy-based models [Ackley et al., 1985, Hinton, 2002, LeCun et al., 2006] or models that embed
optimization layers in neural networks, whose outputs are the solution of an optimization problem
defined by the previous layer [Amos and Kolter, 2017, Tschiatschek et al., 2018]. In contrast to
these lines of work, we optimize the parameters of the model, not the hidden activations or the output.

Meta-learning [Schmidhuber, 1987, Bengio et al., 1995, Thrun and Pratt, 1998] has the same two-
level optimization structure as our work, but focuses on multiple prediction tasks, each of which has
its own separate training data. Most optimization-based meta-learning algorithms can be converted
to the meta-tailoring setting. There is a particularly clear connection to MAML [Finn et al., 2017],
when we let the tailoring method be a step of gradient descent:

τ(θ̂,Ltailor, x) = θ̂ − λ∇θ̂L
tailor(x, θ̂). (1)

There are other optimization-based approaches to meta-learning whose adaptations can be
batched [Zintgraf et al., 2018, Rakelly et al., 2019, Alet et al., 2019]. In particular, FiLM net-
works [Perez et al., 2018], which predict customized conditional normalization layers, have been
used in meta-learning [Zintgraf et al., 2018, Requeima et al., 2019]. By optimizing the conditional
normalization layers themselves, our method CNGRAD is simpler, while remaining provably suffi-
ciently expressive. More importantly, we can add to a trained model CNGRAD layers with weights
initialized to the identity and adapt them to perform (meta-)tailoring.

Tailoring is inspired by transductive learning. However, transductive methods, because they
operate on a batch of unlabeled points, are able to make use of the underlying distribu-
tional properties of those points. On the other hand, tailoring does not need to receive the
queries before doing the bulk of the computation.Within transductive learning, local learn-
ing [Bottou and Vapnik, 1992] has input-dependent parameters, but it uses similarity in raw input
space to select a few data-points instead of reusing the prior learned across the whole data. Some
methods [Garcia and Bruna, 2017, Liu et al., 2018] in meta-learning propagate predictions along the
test samples in a classic transductive fashion.

Optimization processes similar to tailoring and meta-tailoring have been proposed before, to adapt
to different types of variations between training and testing. [Sun et al., 2019] propose to adapt
to a change of distribution with few samples by unsupervised fine-tuning at test-time, applying it
with a loss of predicting whether the input has been rotated. Other methods in the meta-learning
setting exploit test samples of a new task by minimizing either entropy [Dhillon et al., 2020] or a
learned loss [Antoniou and Storkey, 2019] in the inner optimization. Finally, [Wang et al., 2019]
uses entropy in the inner optimization to adapt to large scale variations in image segmentation. In
contrast, we propose (meta-)tailoring as a general effective way to impose inductive biases in the
classic machine learning setting. We also unify tailoring and meta-tailoring with arbitrary losses
under one paradigm, theoretically and empirically showing the advantage of each modification to
classic inductive learning.
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B CNGRAD: a simple algorithm for expressive, efficient tailoring
In the previous sections, we have discussed the principal motivation and theoretical advantages of
(meta-)tailoring. However, there is a remaining issue for efficient GPU computations: whereas one
can efficiently parallelize the evaluation of a single model over a batch across inputs, it is challenging
to efficiently parallelize the evaluation of multiple tailored models over a batch. To overcome this
issue, by building on CAVIA [Zintgraf et al., 2018] and WarpGrad [Flennerhag et al., 2019], we
propose CNGRAD which adapts only conditional normalization parameters and enables efficient
GPU computations for (meta-)tailoring. CNGRAD can also be used in regular meta-learning; details
and pseudo-codes of both versions can be found in appendix G.

As is done in batch-norm [Ioffe and Szegedy, 2015] after normalization, we can implement an
element-wise affine transformation with parameters (γ, β), scaling and shifting the output h(l)

k (x)

of each k-th node at l-th hidden layer independently: γ(l)
k h

(l)
k (x) + β

(l)
k . In conditional normaliza-

tion, [Dumoulin et al., 2016] train a collection of (γ, β) in a multi-task fashion to learn different tasks
with a single network. We propose to bring this concept to the meta-learning and (meta-)tailoring set-
tings and adapt the affine parameters (γ, β) to each query . For meta-tailoring, the inner optimization
minimizes the tailoring loss at an input x by adjusting the affine parameters and the outer optimization
adapts the rest of the network. Similar to MAML [Finn et al., 2017], we implement a first-order
version, which does not backpropagate through the optimization, and a second-order version, which
does. CNGRAD is widely applicable, since we can add these adaptable affine parameters to any
hidden layer.While we are only changing a tiny portion of the network, we prove below that, under
realistic assumptions, we can minimize the inner tailoring loss using only the affine parameters.
However, note that we still need the entire network to minimize the outer meta-objective.

To analyze properties of the adaptable affine parameters, let us decompose θ into θ = (w, γ, β),
where the w contains all the weight parameters (including bias terms), and the (γ, β) contains
all the affine parameters. Given arbitrary coefficients η1, . . . , ηng ∈ R and an arbitrary function
(fθ(x), x) 7→ `tailor(fθ(x), x), let Ltailor(x, θ) =

∑ng
i=1 ηi`tailor(fθ(g

(i)(x)), x), where g(1), . . . , g(ng)

are arbitrary input augmentation functions at prediction time. Note that ng is typically small (ng � n)
in meta-tailoring; e.g., ng = 1 in the method in Section 3 regardless of the size of the dataset n.

Corollary 1 states that for any given ŵ, if we add any tiny (non-degenerate) Gaussian noise δ as
ŵ+ δ with zero mean and any variance on δ, the global minimum value with respect to all parameters
(w, γ, β) can be achieved by optimizing only the affine parameters (γ, β), with probability one.
Assumption 1. (Common activation) The activation function σ(x) is real analytic, monotonically
increasing, and the limits exist as: limx→−∞ σ(x) = σ− > −∞ and limx→+∞ σ(x) = σ+ ≤ +∞.

Theorem 2. For any x ∈ X that satisfies ‖g(i)(x)‖22 − g(i)(x)>g(j)(x) > 0 (for all i 6= j), and for
any fully-connected neural network with a single output unit, at least ng neurons per hidden layer,
and activation functions that satisfy Assumption 1, the following holds: infw,γ,β Ltailor(x,w, γ, β) =
infγ,β Ltailor(x, w̄, γ, β) for any w̄ /∈ W where Lebesgue measure ofW ⊂ Rd is zero.

Corollary 1. Under the assumptions of Theorem 2, for any ŵ ∈ Rd, with probability one over
randomly sampled δ ∈ Rd accordingly to any non-degenerate Gaussian distribution, the following
holds: infw,γ,β Ltailor(x,w, γ, β) = infγ,β Ltailor(x, ŵ + δ, γ, β) for any x ∈ X .

Assumption 1 is satisfied by using common activation functions such as sigmoid and hyperbolic
tangent, as well as softplus, which is defined as σα(x) = ln(1+exp(αx))/α and satisfies Assumption
1 with any hyperparameter α ∈ R>0. The softplus activation function can approximate the ReLU
function to any desired accuracy: i.e., σα(x)→ relu(x) as α→∞, where relu represents the ReLU
function. Moreover, the condition ‖g(i)(x)‖22 − g(i)(x)>g(j)(x) > 0 (for all i 6= j) can be easily
satisfied, for example, by choosing g(1), . . . , g(ng) to produce normalized and distinguishable inputs
(the normalization is not a necessary condition) (see Appendix D). Therefore, CNGRAD is a practical
and computationally efficient method to implement (meta-)tailoring.
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C Meta-tailoring with a contrastive tailoring loss
Contrastive learning [Hadsell et al., 2006] has seen significant successes recently in problems of semi-
supervised learning from images [Oord et al., 2018, He et al., 2019, Chen et al., 2020]. The main
idea is to create multiple versions of each training image, and learn a representation in which variations
of the same image are very close and variations of different images are far apart. Typical variations
involve cropping, color distortions and rotation. We show theoretically that, under reasonable
conditions, meta-tailoring using a particular contrastive loss Lcont as Ltailor = Lcont helps us improve
generalization errors in expectation compared with performing classical inductive learning.

We define θx,S to be the θx obtained with a training dataset S = ((xi, yi))
n
i=1 and tailoring

with the contrastive loss at the prediction point x. Theorem 3 provides an upper bound on
the expected supervised loss Ex,y[Lsup(fθx,S (x), y)] in terms of the expected contrastive loss
Ex[Lcont(x, θx,S)] (which is defined and analyzed in more detail in Appendix E), the empirical
supervised loss 1

n

∑n
i=1 Lsup(fθxi,S (xi), yi) of the meta-tailoring algorithm, and the uniform sta-

bility ζ of the meta-tailoring algorithm. As a complement, instead of using the uniform stability
ζ, Theorem 7 (detailed in appendix F) provides a similar bound with the Rademacher complexity
[Bartlett and Mendelson, 2002] Rn(Lsup ◦ F) of the set Lsup ◦ F = {(x, y) 7→ Lsup(fθx(x), y) :
(x 7→ fθx(x)) ∈ F}. All proofs in this paper are deferred to Appendix F.
Definition 2. Let S = ((xi, yi))

n
i=1 and S′ = ((x′i, y

′
i))

n
i=1 be any two training datasets that

differ by a single point. Then, a meta-tailoring algorithm S 7→ fθx,S (x) is uniformly ζ-stable if
∀(x, y) ∈ X × Y, |Lsup(fθx,S (x), y)− Lsup(fθx,S′ (x), y)| ≤ ζ

n .

Theorem 3. Let S 7→ fθx,S (x) be a uniformly ζ-stable meta-tailoring algorithm. Then, for any
δ > 0, with probability at least 1 − δ over an i.i.d. draw of n i.i.d. samples S = ((xi, yi))

n
i=1,

the following holds: for any κ ∈ [0, 1], Ex,y[Lsup(fθx,S (x), y)] ≤ κEx
[
Lcont(x, θx,S)

]
+ (1− κ)J ,

where J = 1
n

∑n
i=1 Lsup(fθxi,S

(xi), yi) + ζ
n + (2ζ + c)

√
(ln(1/δ))/(2n), and c is the upper bound

on the per-sample loss as Lsup(fθ(x), y) ≤ c.

In the case of regular inductive learning we get a bound of the exact same form, except that we
have a single θ instead of a θx tailored to each input x. These differences are marked in bold
green in Definition 2 and Theorem 3. This theorem illustrates the effect of meta-tailoring on
contrastive learning, with its potential reduction of the expected contrastive loss Ex[Lcont(x, θx,S)].
In classic induction, we may aim to minimize the empirical contrastive loss 1

n̄

∑n̄
i=1 Lcont(xi, θ)

with n̄ potentially unlabeled training samples (in addition to the empirical supervised loss), which
incurs the additional generalization error of Ex[Lcont(x, θx,S)] − 1

n̄

∑n̄
i=1 Lcont(xi, θ). In contrast,

the meta-tailoring can avoid this extra generalization error by directly minimizing Ex[Lcont(x, θx,S)].

In the case where Ex[Lcont(x, θx,S)] is left large (e.g., due to large computational cost at prediction
time), Theorem 3 still illustrates competitive generalization bounds of meta-tailoring with small
κ, when compared to classical induction. For example, with κ = 0, it provides standard types
of generalization bounds with the uniform stability for meta-tailoring algorithms. Even in this
case, the bounds are not equivalent to those of classic induction, and there are potential benefits of
meta-tailoring, which are discussed in the following section with a more general setting.
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D On the condition in Theorem 2 and Corollary 1

In Theorem 2 and Corollary 1, the condition ‖g(i)(x)‖22 − g(i)(x)>g(j)(x) > 0 (for all i 6= j) can be
easily satisfied, for example, by choosing g(1), . . . , g(ng) to produce normalized and distinguishable
argumented inputs for each prediction point x at prediction time. To see this, with normalization
‖g(i)(x)‖22 = ‖g(j)(x)‖22, the condition is satisfied if ‖g(i)(x) − g(j)(x)‖22 > 0 for i 6= j since
1
2‖g

(i)(x)− g(j)(x)‖22 = ‖g(i)(x)‖22 − g(i)(x)>g(j)(x).

In general, the normalization is not necessary for the condition to hold; e.g., orthogonality on g(i)(x)
and g(j)(x) along with g(i)(x) 6= 0 satisfies it without the normalization.

E Understanding the expected meta-tailoring contrastive loss

To analyze meta-tailoring for contrastive learning, we focus on the binary classification loss of the
form Lsup(fθ(x), y) = `cont(fθ(x)y − fθ(x)y′=¬y) where `cont is convex and `cont(0) = 1. With this,
the objective function θ 7→ Lsup(fθ(x), y) is still non-convex in general. For example, the standard
hinge loss `cont(z) = max{0, 1− z} and the logistic loss `cont(z) = s log2(1 + exp(z)) satisfy this
condition.

We first define the meta-tailoring contrastive loss Lcont(x, θ) in detail. In meta-tailoring contrastive
learning, we choose the probability measure of positive example x+ ∼ µx+(x) and the probability
measure of negative example x−, y− ∼ µx−,y−(x), both of which are tailored for each input point
x at prediction time. These choices induce the marginal distributions for the negative examples
y− ∼ µy−(x) and x− ∼ µx−(x), as well as the unknown probability of y− = y defined by
ρy(µy−(x)) = Ey−∼µy− (x)(1{y− = y}). Define the lower and upper bound on the probability of
y− = y as ρ(x) ≤ ρy(µy−(x)) ≤ ρ̄(x) ∈ [0, 1).

Then, the first pre-meta-tailoring contrastive loss can be defined by

Lx
+,x−

cont (x, θ) = Ex+∼µx+ (x),

x−∼µx− (x)

[`cont(hθ (x)>(hθ (x+)− hθ (x−)))],

where hθ (x) ∈ RmH+1 represents the output of the last hidden layer, including a constant neuron
corresponding the bias term of the last output layer (if there is no bias term, hθ (x) ∈ RmH ). For
every z ∈ R2×(mH+1), define ψx,y,y−(z) = `cont((zy − zy−)hθ (x)), where zy ∈ R1×mH is the y-th
row vector of z. We define the second pre-meta-tailoring contrastive loss by

Lx
+,x−,y−

cont (x, θ) = max
y

Ey−∼µy− (x)[ψx,y,y−(θ(H+1))− ψx,1,2([u+
h , u

−
h ]>)],

where u+
h = Ex+∼µx+ (x)[hθ (x+)] and u−h = Ex−∼µx− (x)[hθ (x−)]. Here, we decompose θ as θ =

(θ(1:H), θ(H+1)), where θ(H+1) = [W (H+1), b(H+1)] ∈ Rmy×(mH+1) represents the parameters at
the last output layer, and θ(1:H) represents all others.

Then, the meta-tailoring contrastive loss is defined by

Lcont(x, θ) =
1

1− ρ̄(x)

(
Lx

+,x−

cont (x, θ) + Lx
+,x−,y−

cont (x, θ)− ρ(x)
)
.

Theorem 4 states that for any θ(1:H), the convex optimization of Lx
+,x−

cont (x, θ) + Lx
+,x−,y−

cont (x, θ)

over θ(H+1) can achieve the value of Lx
+,x−

cont (x, θ) without the value of Lx
+,x−,y−

cont (x, θ), allowing
us to focus on the first term Lx

+,x−

cont (x, θ), for some choice of µx−,y−(x) and µx+(x).

Theorem 4. For any θ(1:H), µx−,y−(x) and µx+(x), the function θ(H+1) 7→ Lx
+,x−

cont (x, θ) +

Lx
+,x−,y−

cont (x, θ) is convex. Moreover, there exists µx−,y−(x) and µx+(x) such that, for any θ(1:H)

and any θ̄(H+1),

inf
θ(H+1)∈Rmy×(mH+1)

Lx
+,x−

cont (x, θ) + Lx
+,x−,y−

cont (x, θ) ≤ Lx
+,x−

cont (x, θ(1:H), θ̄(H+1)).

11



F Proofs

In order to have concise proofs, we introduce additional notations while keeping track of dependent
variables more explicitly. Since hθ only depends on θ(1:H), let us write hθ(1:H) = hθ. Similarly,
Lcont(x, θ

(1:H)) = Lcont(x, θ). Let θ(x) = θx and θ(x, S) = θx,S . Define L = Lsup.

F.1 Proof of Theorem 2

Proof of Theorem 2. The output of fully-connected neural networks for an input x with a parameter
vector θ = (w, γ, β) can be represented by fθ(x) = W (H+1)h(H)(x) + b(H+1) where W (H+1) ∈
R1×mH and b(H+1) ∈ R are the weight matrix and the bias term respectively at the last layer, and
h(H)(x) ∈ RmH represents the output of the last hidden layer. Here, ml represents the number of
neurons at the l-th layer, and h(l)(x) = γ(l)(σ(W (l)h(l−1)(x)+b(l)))−β(l) ∈ Rml for l = 1, . . . ,H ,
with trainable parameters γ(l), β(l) ∈ Rml , where h(0)(x) = x. Let z(l)(x) = σ(W (l)h(l−1)(x) +
b(l)).

Then, by rearranging the definition of the output of the neural networks,

fθ(x) = W (H+1)h(H)(x) + b(H+1)

=

(
mH∑
k=1

W
(H+1)
k γ

(H)
k z(H)(x)k +W

(H+1)
k β

(H)
k

)
+ b(H+1)

= [W (H+1) ◦ z(H)(x)>,W (H+1)]

[
γ(H)

β(H)

]
+ b(H+1).

Thus, we can write  fθ(g
(1)(x))
...

fθ(g
(ng)(x))

 = Mw

[
γ(H)

β(H)

]
+ b(H+1)1ng ∈ Rng , (2)

where

Mw =

W
(H+1) ◦ z(H)(g(1)(x))>,W (H+1)

...
W (H+1) ◦ z(H)(g(ng)(x))>,W (H+1)

 ∈ Rng×2mH ,

and 1ng = [1, 1, . . . , 1]> ∈ Rng .

Using the above equality, we show an exitance of a (γ, β) such that Ltailor(x, w̄, γ, β) =
infw,γ,β Ltailor(x, θ) for any x ∈ X ⊆ Rmx and any w̄ /∈ W where Lebesgue measure ofW ⊂ Rd is
zero. To do so, we first fix γ(l)

k = 1 and β(l)
k = 0 for l = 1, . . . ,H − 1, with which h(l)(x) = z(l)(x)

for l = 1, . . . ,H − 1.

Define ϕ(w) = det(MwM
>
w ), which is analytic since σ is analytic. Furthermore, we have that

{w ∈ Rd : Mw has rank less than ng} = {w ∈ Rd : ϕ(w) = 0}, since the rank of Mw and the rank
of the Gram matrix are equal. Since ϕ is analytic, if ϕ is not identically zero (ϕ 6= 0), the Lebesgue
measure of its zero set {w ∈ Rd : ϕ(w) = 0} is zero [Mityagin, 2015]. Therefore, if ϕ(w) 6= 0 for
some w ∈ Rd, the Lebesgue measure of the set {w ∈ Rd : Mw has rank less than ng} is zero.

Accordingly, we now constructs a w ∈ Rd such that ϕ(w) 6= 0. Set W (H+1) = 1>mH . Then,

Mw = [M̄w,1ng,mH ] ∈ Rng×mH .

where

M̄w =

 z(H)(g(1)(x))>

...
z(H)(g(ng)(x)(x))>

 ∈ Rng×mH
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and 1ng,mH ∈ Rng×mH with (1ng,mH )ij = 1 for all i, j. For l = 1, . . . ,H , define

G(l) =

 z
(l)(g(1)(x))>

...
z(l)(g(ng)(x))>

 ∈ Rng×ml .

Then, for l = 1, . . . ,H ,
G(l) = σ(G(l−1)(W (l))> + 1ng (b(l))>),

where σ is applied element-wise (by overloading of the notation σ), and

(M̄w)ik = (G(H))ik.

From the assumption g(x), there exists c > 0 such that ‖g(i)(x)‖22 − 〈g(i)(x), g(j)(x)〉 > c for
all i 6= j. From Assumption 1, there exists c′ such that σ+ − σ− > c′. Using these constants,
set W (1)

i = α(1)g(i)(x)> and b(1)
i = cα(1)/2 − α(1)‖g(i)(x)‖22 for i = 1, . . . , ng, where W (1)

i

represents the i-th row of W (1). Moreover, set W (l)
1:ng,1:ng

= α(l)Ing and b(l)k = c′α(l)/2− α(l)σ+

for all k and l = 2, . . . ,H , where W (l)
1:ng,1:ng

is the fist ng × ng block matrix of W (1) and Ing is the
ng × ng identity matrix. Set all other weights and bias to be zero. Then, for any i ∈ {1, . . . , ng},

(G(1))ii = σ(cα(1)/2),

and for any k ∈ {1, . . . , ng} with k 6= i,

(G(1))ik = σ(α(1)(〈g(i)(x), g(k)(x)〉 − ‖g(k)(x)‖22 + c/2)) ≤ σ(−cα(1)/2).

Since σ(cα(1)/2)→ σ+ and σ(−cα(1)/2)→ σ− as α(1) →∞, with α(1) sufficiently large, we have
that σ(cα(1)/2)− σ+ + c′/2 ≥ c(2)

1 and σ(−cα(1)/2)− σ+ + c′/2 ≤ −c(2)
2 for some c(2)

1 , c
(2)
2 > 0.

Note that c(2)
1 and c(2)

2 depends only on α(1) and does not depend on any of α(2), . . . , α(H). Therefore,
with α(1) sufficiently large,

(G(2))ii = σ(α(2)(σ(cα(1)/2)− σ+ + c′/2)) ≥ σ(α(2)c
(2)
1 ),

and
(G(2))ik ≤ σ(α(2)(σ(−cα(1)/2)− σ+ + c′/2)) ≤ σ(−α(2)c

(2)
2 ).

Repeating this process with Assumption 1, we have that with α(1), . . . , α(H−1) sufficiently large,

(G(H))ii ≥ σ(α(H)c
(H)
1 ),

and
(G(H))ik ≤ σ(−α(H)c

(H)
2 ).

Here, (G(H))ii → σ+ and (G(H))ik → σ− as α(H) → ∞. Therefore, with α(1), . . . , α(H) suffi-
ciently large, for any i ∈ {1, . . . , ng},∣∣(M̄w)ii − σ−

∣∣ >∑
k 6=i

∣∣(M̄w)ik − σ−
∣∣ . (3)

The inequality (3) means that the matrix M̄ ′w = [(M̄w)ij − σ−]1≤i,j≤ng ∈ Rng×ng is strictly
diagonally dominant and hence is nonsingular with rank ng . This implies that the matrix [M̄ ′w,1ng ] ∈
Rng×(ng+1) has rank ng. This then then implies that the matrix M̃w = [[(M̄w)ij ]1≤i,j≤ng ,1ng ] ∈
Rng×(ng+1) has rank ng, since the elementary matrix operations preserve the matrix rank. Since
the set of all columns of Mw contains all columns of M̃w, this implies that Mw has rank ng and
ϕ(w) 6= 0 for this constructed particular w.

Therefore, the Lebesgue measure of the set W = {w ∈ Rd : ϕ(w) = 0} is zero. If w /∈ W ,
{(fw̄,γ̄,β̄(g(1)(x)), . . . , fw̄,γ̄,β̄(g(ng)(x)) ∈ Rng : γ̄(l), β̄(l) ∈ Rml} = Rng , since Mw has rank ng
in (2) for some γ̄(l), β̄(l) for l = 1, . . . ,H − 1 as shown above. Thus, for any w̄ /∈ W and for any
(w, γ, β), there exists (γ̄, β̄) such that

(fw,γ,β(g(1)(x)), . . . , fw,γ,β(g(ng)(x)) = (fw̄,γ̄,β̄(g(1)(x)), . . . , fw̄,γ̄,β̄(g(ng)(x))

which implies the desired statement.
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F.2 Proof of Corollary 1

Proof of Corollary 1. Since non-degenerate Gaussian measure with any mean and variance is ab-
solutely continuous with respect to Lebesgue measure, Theorem 2 implies the statement of this
corollary.

F.3 Proof of Theorem 3

The following lemma provides an upper bound on the expected loss via expected meta-tailoring
contrastive loss.
Lemma 5. For every θ,

Ex,y[L(fθ(x), y)] ≤ Ex
[

1

1− ρ̄(x)

(
Lx

+,x−

cont (x, θ(1:H)) + Lx
+,x−,y−

cont (x, θ)− ρ(x)
)]

Proof of Lemma 5. Using the notation ρ = ρy(µy−(x)),

Ex,y[L(fθ(x), y)]

= Ex,y
[

1

1− ρ
((1− ρ)L(fθ(x), y)± ρ)

]
= Ex,y

[
1

1− ρ
(
(1− ρ)`cont(fθ(x)y − fθ(x)y− 6=y) + ρ`cont(fθ(x)y − fθ(x)y−=y)− ρ

)]
= Ex,y

[
1

1− ρ

(
Ey−∼µy− (x)[`cont(fθ(x)y − fθ(x)y−)]− ρ

)]
= Ex,y

[
1

1− ρ

(
Ey−∼µy− (x)[ψx,y,y−(θ(H+1))]− ρ

)]
≤ Ex,y

[
1

1− ρ

(
ψx,1,2([u+

h , u
−
h ]>) + Lx

+,x−,y−

cont (x, θ)− ρ
)]

≤ Ex,y
[

1

1− ρ

(
Lx

+,x−

cont (x, θ(1:H)) + Lx
+,x−,y−

cont (x, θ)− ρ
)]

where the third line follows from the definition of L(fθ(x), y) and `cont(fθ(x)y − fθ(x)y′=y) =
`cont(0) = 1, the forth line follows from the definition of ρ and the expectation Ey−∼µy− (x), the

fifth line follows from fθ(x)y = θ
(H+1)
y hθ(1:H)(x) and fθ(x)y− = θ

(H+1)
y− hθ(1:H)(x), the sixth line

follows from the definition of Lx
+,x−,y−

cont . The last line follows from the convexity of `cont and
Jensen’s inequality: i.e.,

ψx,1,2([u+
h , u

−
h ]>)

= `cont(Ex+∼µx+ (x)Ex−∼µx− (x)[(hθ(1:H)(x+)− hθ(1:H)(x−))>hθ(1:H)(x)])

≤ Ex+∼µx+ (x)Ex−∼µx− (x)`cont((hθ(1:H)(x+)− hθ(1:H)(x−))>hθ(1:H)(x)).

Therefore,

Ex,y[L(fθ(x), y)]

≤ Ex,y
[

1

1− ρy(µy−(x))

(
Lx

+,x−

cont (x, θ(1:H)) + Lx
+,x−,y−

cont (x, θ)− ρy(µy−(x))
)]

≤ Ex
[

1

1− ρ̄(x)

(
Lx

+,x−

cont (x, θ(1:H)) + Lx
+,x−,y−

cont (x, θ)− ρ(x)
)]

where we used ρ(x) ≤ ρy(µy−(x)) ≤ ρ̄(x) ∈ [0, 1).

Lemma 6. Let S 7→ fθ(x,S)(x) be an uniformly ζ-stable tailoring algorithm. Then, for any δ > 0,
with probability at least 1− δ over an i.i.d. draw of n i.i.d. samples S = ((xi, yi))

n
i=1, the following
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holds:

Ex,y[L(fθ(x,S)(x), y)] ≤ 1

n

n∑
i=1

L(fθ(xi,S)(xi), yi) +
ζ

n
+ (2ζ + c)

√
ln(1/δ)

2n
.

Proof of Lemma 6. Define ϕ1(S) = Ex,y[L(fθ(x,S)(x), y)] and ϕ2(S) =
1
n

∑n
i=1 L(fθ(xi,S)(xi), yi), and ϕ(S) = ϕ1(S) − ϕ2(S). To apply McDiarmid’s inequality

to ϕ(S), we compute an upper bound on |ϕ(S) − ϕ(S′)| where S and S′ be two training datasets
differing by exactly one point of an arbitrary index i0; i.e., Si = S′i for all i 6= i0 and Si0 6= S′i0 ,
where S′ = ((x′i, y

′
i))

n
i=1. Let ζ̃ = ζ

n Then,

|ϕ(S)− ϕ(S′)| ≤ |ϕ1(S)− ϕ1(S′)|+ |ϕ2(S)− ϕ2(S′)|.
For the first term, using the ζ-stability,

|ϕ1(S)− ϕ1(S′)| ≤ Ex,y[|L(fθ(x,S)(x), y)− L(fθ(x,S′)(x), y)|]
≤ ζ̃.

For the second term, using ζ-stability and the upper bound c on per-sample loss,

|ϕ2(S)− ϕ2(S′)| ≤ 1

n

∑
i6=i0

|L(fθ(xi,S)(xi), yi)− L(fθ(xi,S′)(xi), yi)|+
c

n

≤ (n− 1)ζ̃

n
+
c

n
≤ ζ̃ +

c

n
.

Therefore, |ϕ(S)− ϕ(S′)| ≤ 2ζ̃ + c
n . By McDiarmid’s inequality, for any δ > 0, with probability at

least 1− δ,

ϕ(S) ≤ ES [ϕ(S)] + (2ζ + c)

√
ln(1/δ)

2n
.

The reset of the proof bounds the first term ES [ϕ(S)]. By the linearity of expectation,

ES [ϕ(S)] = ES [ϕ1(S)]− ES [ϕ1(S)].

For the first term,
ES [ϕ1(S)] = ES,x,y[L(fθ(x,S)(x), y)].

For the second term, using the linearity of expectation,

ES [ϕ2(S)] = ES

[
1

n

n∑
i=1

L(fθ(xi,S)(xi), yi)

]

=
1

n

n∑
i=1

ES [L(fθ(xi,S)(xi), yi)]

=
1

n

n∑
i=1

ES,x,y[L(fθ(x,Six,y)(x), y)],

where Si is a sample of n points such that (Six,y)j = Sj for j 6= i and (Six,y)i = (x, y). By
combining these, using the linearity of expectation and ζ-stability,

ES [ϕ(S)] =
1

n

n∑
i=1

ES,x,y[L(fθ(x,S)(x), y)− L(fθ(x,Six,y)(x), y)]

≤ 1

n

n∑
i=1

ES,x,y[|L(fθ(x,S)(x), y)− L(fθ(x,Six,y)(x), y)|]

≤ 1

n

n∑
i=1

ζ̃ = ζ̃.

Therefore, ES [ϕ(S)] ≤ ζ̃.
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Proof of Theorem 3. For any θ and κ ∈ [0, 1],

Ex,y[L(fθ(x), y)] = κEx,y[L(fθ(x), y)] + (1− κ)Ex,y[L(fθ(x), y)].

Applying Lemma 5 for the first term and Lemma 6 yields the desired statement.

F.4 Statement and proof of Theorem 7

Theorem 7. Let F be an arbitrary set of maps x 7→ fθx(x). Then, for any δ > 0, with probability at
least 1−δ over an i.i.d. draw of n i.i.d. samples ((xi, yi))

n
i=1, the following holds: for all maps (x 7→

fθx(x)) ∈ F and any κ ∈ [0, 1], we have that Ex,y[Lsup(fθx(x), y)] ≤ κEx [Lcont(x, θx)]+(1−κ)J ′,
where J ′ = 1

n

∑n
i=1 Lsup(fθxi (xi), yi) + 2Rn(Lsup ◦ F) + c

√
(ln(1/δ))/(2n).

The following lemma is used along with Lemma 5 to prove the statement of this theorem.
Lemma 8. Let F be an arbitrary set of maps x 7→ fθx(x). For any δ > 0, with probability at
least 1 − δ over an i.i.d. draw of n i.i.d. samples ((xi, yi))

n
i=1, the following holds: for all maps

(x 7→ fθx(x)) ∈ F ,

Ex,y[L(fθx(x), y)] ≤ 1

n

n∑
i=1

L(fθxi (xi), yi) + 2Rn(L ◦ F) + c

√
ln(1/δ)

2n
.

Proof of Lemma 8. Let S = ((xi, yi))
n
i=1 and S′ = ((x′i, y

′
i))

n
i=1. Define

ϕ(S) = sup
(x 7→fθx (x))∈F

Ex,y[L(fθx(x), y)]− 1

n

n∑
i=1

L(fθxi (xi), yi).

To apply McDiarmid’s inequality to ϕ(S), we compute an upper bound on |ϕ(S)− ϕ(S′)| where S
and S′ be two training datasets differing by exactly one point of an arbitrary index i0; i.e., Si = S′i
for all i 6= i0 and Si0 6= S′i0 . Then,

ϕ(S′)− ϕ(S) ≤ sup
(x 7→fθx (x))∈F

L(fθ(xi0 )(xi0), yi0)− L(fθ(x′i0 )(x
′
i0

), y′i0)

n
≤ c

n
.

Similarly, ϕ(S)− ϕ(S′) ≤ c
n . Thus, by McDiarmid’s inequality, for any δ > 0, with probability at

least 1− δ,

ϕ(S) ≤ ES [ϕ(S)] + c

√
ln(1/δ)

2n
.

Moreover, with f(x) = fθx(x),

ES [ϕ(S)] = ES

[
sup
f∈F

ES′
[

1

n

n∑
i=1

L(fθ(x′i)(x
′
i), y

′
i)

]
− 1

n

n∑
i=1

L(fθxi (xi), yi)

]

≤ ES,S′
[

sup
f∈F

1

n

n∑
i=1

(L(fθ(x′i)(x
′
i), y

′
i)− L(fθxi (xi), yi)

]

≤ Eξ,S,S′
[

sup
f∈F

1

n

n∑
i=1

ξi(L(fθ(x′i)(x
′
i), y

′
i)− L(fθxi (xi), yi))

]

≤ 2Eξ,S

[
sup
f∈F

1

n

n∑
i=1

ξiL(fθxi (xi), yi))

]
where the fist line follows the definitions of each term, the second line uses the Jensen’s in-
equality and the convexity of the supremum, and the third line follows that for each ξi ∈
{−1,+1}, the distribution of each term ξi(L(fθ(x′i)(x

′
i), y

′
i)− L(fθxi (xi), yi)) is the distribution of

(L(fθ(x′i)(x
′
i), y

′
i)− L(fθxi (xi), yi)) since S̄ and S̄′ are drawn iid with the same distribution. The

forth line uses the subadditivity of supremum.
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Proof of Theorem 7. For any θ and κ ∈ [0, 1],

Ex,y[L(fθ(x), y)] = κEx,y[L(fθ(x), y)] + (1− κ)Ex,y[L(fθ(x), y)].

Applying Lemma 5 for the first term and Lemma 8 yields the desired statement.

F.5 Proof of Theorem 4

Proof of Theorem 4. Let θ(1:H) be fixed. We first prove the first statement for the convexity. The func-
tion θ(H+1) 7→ ψx,y,y−(θ(H+1)) is convex, since it is a composition of a convex function `cont and a
affine function z 7→ (zy−zy−)hθ(1:H)(x)). The function θ(H+1) 7→ Ey−∼µy− (x)[ψx,y,y−(θ(H+1))−
ψx,1,2([u+

h , u
−
h ]>)] is convex since the expectation and affine translation preserves the convexity.

Finally, θ(H+1) 7→ Lx
+,x−,y−

cont (x, θ(1:H), θ(H+1)) is convex since it is the piecewise maximum of the
convex functions

θ(H+1) 7→ Ey−∼µy− (x)[ψx,y,y−(θ(H+1))− ψx,1,2([u+
h , u

−
h ]>)]

for each y.

We now prove the second statement of the theorem for the inequality. Let us write µx+ = µx|y and
µx− = µx|y− . Let U = [u1, u2]> ∈ Rmy×(mH+1) where uy = Ex∼µx|y [hθ(1:H)(x)] for y ∈ {1, 2}.
Then,

u+
h = Ex+∼µx+ (x)[hθ(1:H)(x+)] = Ex+∼µx|y [hθ(1:H)(x+)] = uy,

and
u−h = Ex−∼µx− (x)[hθ(1:H)(x−)] = Ex−∼µx|y− [hθ(1:H)(x−)] = uy− .

Therefore,
ψx,1,2([u+

h , u
−
h ]>) = ψx,y,y−(U),

with which

Lx
+,x−,y−

cont (x, θ) = max
y

Ey−∼µy− (x)[ψx,y,y−(θ(H+1))− ψx,y,y−(U)].

Since U and θ(1:H) do not contain θ(H+1), for any U, θ̄(1:H), there exists θ(H+1) = U for which
ψx,y,y−(θ(H+1))− ψx,y,y−(U) = 0 and hence Lx

+,x−,y−

cont (x, θ) = 0. Therefore,

inf
θ(H+1)∈Rmy×(mH+1)

Lx
+,x−

cont (x, θ(1:H)) + Lx
+,x−,y−

cont (x, θ(1:H), θ(H+1))

= Lx
+,x−

cont (x, θ(1:H)) + inf
θ(H+1)∈Rmy×(mH+1)

Lx
+,x−,y−

cont (x, θ(1:H), θ(H+1))

≤ Lx
+,x−

cont (x, θ(1:H)).

F.6 Proof of Remark 1

Proof of Remark 1. For any θ,

Ex,y[L(fθ(x), y)] = inf
κ∈[0,1]

κEx,y[L(fθ(x), y)] + (1− κ)Ex,y[L(fθ(x), y)].

Applying Lemma 6 for Theorem 3 (and Lemma 8 for Theorem 7) to the second term and the
assumption Ex,y[L(fθ(x), y)] ≤ Ex[Lun(fθ(x))] to the first term yields the desired statement.

17



G Details and description of CNGRAD

In this section we describe CNGRAD in greater detail: its implementation, different variants and
run-time costs. Note that, although this section is written from the perspective of meta-tailoring, CN-
GRAD is also applicable to meta-learning, we provide pseudo-code in algorithm 2. The main idea
behind CNGRAD is to optimize only conditional normalization (CN) parameters γ(l), β(l) in the
inner loop and optimize all the other weights w in the outer loop. To simplify notation for imple-
mentation, in this subsection only, we overload notations to make them work over a mini-batch
as follows. Let b be a (mini-)batch size. Given X ∈ Rb×m0 , γ ∈ Rb×

∑
lml and β ∈ Rb×

∑
lml ,

let (fw,γ,β(X))i = fw,γi,βi(Xi) where Xi, γi, and βi are the transposes of the i-th row vectors of
X , γ and β, respectively. Similarly, Lsup and Ltailor are used over a mini-batch. We also refer to
θ = (w, γ, β).

Initialization of γ, β In the inner loop we always initialize γ = 1b,
∑
lml

, β = 0b,
∑
lml

. More
complex methods where the initialization of these parameters is meta-trained are also possible.
However, we note two things:

1. By initializing to the identity function, we can pick an architecture trained with regular
inductive learning, add CN layers without changing predictions and perform tailoring. In
this manner, the prediction algorithm is the same regardless of whether we trained with
meta-tailoring or without the CN parameters.

2. We can add a previous normalization layer with weights γ′(l), β′(l) that are trained in the
outer loop, having a similar effect than meta-learning an initialization. However, we do not
do it in our experiments.

First and second order versions of CNGRAD: w affect Lsup in two ways: first, they di-
rectly affect the evaluation fw,γs,βs(X) by being weights of the neural network; second,
they affect ∇βLtailor,∇γLtailor which affects γs, βs which in turn affect Lsup. Similar to
MAML [Finn et al., 2017], we can implement two versions: in the first order version we only
take into account the first effect, while in the second order version we take into account both effects.
The first order version has three advantages:

1. It is very easy to code: the optimization of the inner parameters and the outer parameters are
detached and we simply need to back-propagate Ltailor with respect to β, γ and Lsup with
respect to w. This version is easier to implement than most meta-learning algorithms, since
the parameters in the inner and outer loop are different.

2. It is faster: because we do not back-propagate through the optimization, the overall compu-
tation graph is smaller.

3. It is more stable to train: second-order gradients can be a bit unstable to train; this required
us to lower the inner tailoring learning rate in experiments of section 3 for the second-order
version.

The second-order version has one big advantage: it optimizes the true objective, taking into account
how Ltailor will affect the update of the network. This is critical to linking the unsupervised loss to
best serve the supervised loss by performing informative updates to the CN parameters.

WarpGrad-inspired stopping of gradients and subsequent reduction in memory cost: Warp-
Grad [Flennerhag et al., 2019] was an inspiration to CNGRAD suggesting to interleave layers that
are adapted in the inner loop with layers only adapted in the outer loop. In contrast to WarpGrad,
we can evaluate inputs (in meta-tailoring) or tasks (in meta-learning) in parallel, which speeds up
training and inference. This also simplifies the code because we do not have to manually perform
batches of tasks by iterating through them.

WarpGrad also proposes to stop the gradients between inner steps; we include this idea as an optional
operation in CNGRAD, as shown in line 12 of 1. The advantage of adding it is that it decreases the
memory cost when performing multiple inner steps, as we now only have to keep in memory the
computation graph of the last step instead of all the steps, key when the networks are very deep like
in the experiments of section H. Another advantage is that it makes training more stable, reducing
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variance, as back-propagating through the optimization is often very noisy for many steps. At the
same time it adds bias, because it makes the greedy assumption that locally minimizing the decrease
in outer loss at every step will lead to low overall loss after multiple steps.

Computational cost: in CNGRAD we perform multiple forward and backward passes, compared
to a single forward pass in the usual setting. In particular, if we perform s tailoring steps, we execute
(s + 1) forward steps and s backward steps, which usually take the same amount of time as the
forward steps. Therefore, in its naive implementation, this method takes about 2s+ 1 times more
than executing the regular network without tailoring.

However, it is well-known that we can often only adapt the higher layers of a network, while keeping
the lower layers constant. Moreover, our proof about the capacity of CNGRAD to optimize a broad
range of inner losses only required us to adapt the very last CN layer γ(H), β(H). This implies we
can put the CN layers only on the top layer(s). In the case of only having one CN layer at the last
network layer, we only require one initial full forward pass (as we do without tailoring). Then, we
have s backward-forward steps that affect only the last layer, thus costing 1

H in case of layers of
equivalent cost. This leads to a factor of 1 + 2s

H in cost, which for s small and H large (typical for
deep networks), is a very small overcost. Moreover, for tailoring and meta-tailoring, we are likely to
get the same performance with smaller networks, which may compensate the increase in cost.

Meta-learning version: CNGRAD can also be used in meta-learning, with the advantage of being
provably expressive, very efficient in terms of parameters and compute, and being able to parallelize
across tasks. We show the pseudo-code for few-shot supervised learning in algorithm 2. There are
two changes to handle the meta-learning setting: first, in the inner loop, instead of the unsupervised
tailoring loss we optimize a supervised loss on the training (support) set. Second, we want to share
the same inner parameters γ, β for different samples of the same task. To do so we add the operation
"repeat_interlave" (PyTorch notation), which makes k contiguous copies of each parameter γ, β,
before feeding them to the network evaluation. In doing so, gradients coming from different samples
of the same task get pooled together. At test time we do the same for the k′ queries (k′ can be
different than k). Note that, in practice, this pooling is also used in meta-tailoring when we have
more than one data augmentation within Ltailor.
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Algorithm 1: CNGRAD for meta-tailoring

1 Subroutine Training(f , Lsup, λsup, Ltailor, λtailor, steps,((xi, yi))ni=1)
2 randomly initialize w // All parameters except γ, β; trained in outer loop
3 while not done do
4 for 0 ≤ i ≤ n/b do // b batch size
5 X,Y = xib:i(b+1), yib:i(b+1)

6 γ0 = 1b,
∑
lml

7 β0 = 0b,
∑
lml

8 for 1 ≤ s ≤ steps do
9 γs = γs−1 − λtailor∇γLtailor(w, γs−1, βs−1, X)

10 βs = βs−1 − λtailor∇βLtailor(w, γs−1, βs−1, X)
11 w = w − λsup∇wLsup (fw,γs,βs(X), Y ))
12 βs, γs = βs.detach(), γs.detach() // Optional operation: WarpGrad

detach to avoid back-proping through multiple steps;
reducing memory, and increasing stability, but adding bias.

13 return w
14 Subroutine Prediction(f , w, Ltailor, λ, steps, X) // For meta-tailoring & tailoring

// X contains multiple inputs, with independent tailoring processes
15 b = X.shape[0] // number of inputs
16 γ0 = 1b,

∑
lml

17 β0 = 0b,
∑
lml

18 for 1 ≤ s ≤ steps do
19 γs = γs−1 − λ∇γLtailor(w, γs−1, βs−1, X)

20 βs = βs−1 − λ∇βLtailor(w, γs−1, βs−1, X)
21 return fw,γsteps,βsteps(X)
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Algorithm 2: CNGRAD for meta-learning
1 Subroutine Meta-training(f , Lsup, λinner, λouter, steps,T )
2 randomly initialize w // All parameters except γ, β; trained in outer loop
3 while not done do
4 for 0 ≤ i ≤ n/b do // b batch size
5 Xtrain, Ytrain = [ ], [ ]
6 Xtest, Ytest = [ ], [ ]
7 for ib ≤ j ≤ i(b+ 1) do
8 (inp, out) ∼k Tj // Take k samples from each task for training
9 X.append (inp) ;Y.append (out)

10 (query, target) ∼′k Tj // Take k′ samples from each task for
testing

11 X.append (query) ;Y.append (target)
// We can now batch evaluations of multiple tasks

Xtrain, Ytrain = concat (Xtrain, dim = 0) , concat (Ytrain, dim = 0)
12 Xtest, Ytest = concat (Xtest, dim = 0) , concat (Ytest, dim = 0)
13 γ0 = 1b,

∑
lml

14 β0 = 0b,
∑
lml

15 for 1 ≤ s ≤ steps do
// We now repeat the CN parameters k times so that samples

from the same task share the same CN parameters
16 γtrs−1, β

tr
s−1 = γs−1.repeat_interleave(k, 1), βs−1.repeat_interleave(k, 1)

17 γs = γs−1 − λinnner∇γLsup(fw,γtrs−1,β
tr
s−1

(Xtrain), Ytrain)

18 βs = βs−1 − λinnner∇βLsup(fw,γtrs−1,β
tr
s−1

(Xtrain), Ytrain)

19 γtests , βtests = γs.repeat_interleave(k′, 1), βs.repeat_interleave(k′, 1)

20 w = w − λouter∇wLsup
(
fw,γtests ,βtests

(Xtest), Ytest)
)

21 βs, γs = βs.detach(), γs.detach()
// WarpGrad detach to not backprop through multiple steps

22 return w
23 Subroutine Meta-test(f , w, Lsup, λinner,steps,Xtrain, Ytrain, Xtest)

// Assuming a single task, although we could evaluate multiple tasks
in parallel as in meta-training.

24 γ0 = 11,
∑
lml

// single γ, β because we only have one task
25 β0 = 01,

∑
lml

26 for 1 ≤ s ≤ steps do
27 γtrs−1, β

tr
s−1 = γs−1.repeat_interleave(k, 1), βs−1.repeat_interleave(k, 1)

28 γs = γs−1 − λinnner∇γLsup(fw,γtrs−1,β
tr
s−1

(Xtrain), Ytrain)

29 βs = βs−1 − λinnner∇βLsup(fw,γtrs−1,β
tr
s−1

(Xtrain), Ytrain)

30 γteststeps, β
test
steps = γsteps.repeat_interleave(k′, 1), βsteps.repeat_interleave(k′, 1)

31 return fw,γteststeps,β
test
steps

(Xtest)
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σ Method 0.0 0.5 1.0 1.5 2.0 2.5 3.0 ACR

0.25 RandSmooth 0.67 0.49 0.00 0.00 0.00 0.00 0.00 0.470
Meta-tailored 0.72 0.55 0.00 0.00 0.00 0.00 0.00 0.494

0.50 RandSmooth 0.57 0.46 0.37 0.29 0.00 0.00 0.00 0.720
Meta-tailored 0.66 0.54 0.42 0.31 0.00 0.00 0.00 0.819

1.00 RandSmooth 0.44 0.38 0.33 0.26 0.19 0.15 0.12 0.863
Meta-tailored 0.52 0.45 0.36 0.31 0.24 0.20 0.15 1.032

Figure 3: Percentage of points with certificate above different radii, and average certified radius
(ACR) for on the ImageNet dataset. Meta-tailoring improves the Average Certification Radius by
5.1%, 13.8%, 19.6% respectively. Results for [Cohen et al., 2019] are taken from [Zhai et al., 2020]
because they add more measures than the original work, with similar results.

H Tailoring for robustness against adversarial examples

Despite their successes, neural networks remain susceptible to the problem of adversarial exam-
ples [Biggio et al., 2013, Szegedy et al., 2013]: targeted small perturbations of an input can cause the
network to mis-classify it. One approach is to make the prediction function smooth via adversarial
training [Madry et al., 2017]; however, this only ensures smoothness in the training points and
constraining our model to be smooth everywhere makes it lose capacity. This is a perfect opportunity
for applying (meta-)tailoring, since we can ask for smoothness a posteriori, only on the specific query.

We apply meta-tailoring to robustly classifying CIFAR-10 [Krizhevsky et al., 2009] and Ima-
geNet [Deng et al., 2009] images, tailoring predictions so that they are locally smooth. We meta-tailor
our classifier using (the first-order version of) CNGRAD and a tailoring loss that enforces smoothness
on the entire vector of features of the penultimate layer in the neural network (denoted gθ(x)):

Ltailor(x, θ) = E[cos_dist(gθ(x), gθ(x+ δ))], δ ∼ N(0, ν2), (4)

where cos_dist(v1, v2) is the cosine distance between vectors v1 and v2. This loss is inspired
by [Ilyas et al., 2019], who argue that adversarial examples are caused by features which are predic-
tive, but non-robust to perturbations. In that way, our loss adjusts the model to ensure features are
locally robust at the input query before predicting. To keep inference fast, we approximate this loss
with a single sample, but it could be improved with more samples or more sophisticated methods.

We build on the work of [Cohen et al., 2019], who developed a method for certifying the robustness
of a model via randomized smoothing. It samples several points from a Gaussian N(x, σ2) around
the query and, if a high enough agreement in classification, it provides a certificate that the example
cannot be adversarially modified by a small perturbation to have a different class. We show that meta-
tailoring improves the original randomized smoothing method, testing for σ = 0.25, 0.5, 1.0. For
simplicity, we use ν = 0.1 for all experiments; the only change being that for CIFAR-10, σ = 1 and
for all ImageNet experiments we initialized its weights with those of [Cohen et al., 2019], the former
to avoid divergence in training, the latter to speed up training. Finally, we use σ′ =

√
σ2 − ν2 ≈

0.23, 0.49, 0.995 so that the points used in our tailoring loss come from N(x, σ2).

In table 3, we show results on Imagenet where we improve the average certification radius by
5.1%, 13.8%, 19.6% respectively. In table 6, in the appendix, we show results on CIFAR-10 where
we improve the average certification radius by 8.6%, 10.4%, 19.2%. We chose to meta-tailor this
randomized smoothing method because it represents a strong standard in certified adversarial
defenses, but it is important to note that there have been advances on this method that sometimes
achieve better results than those we present here [Zhai et al., 2020, Salman et al., 2019], see
appendix M. However, it is likely that these methods could also be improved through meta-tailoring.

These experiments only scratch the surface of what tailoring allows for adversarial defenses: usually,
the adversary looks at the model and gets to pick a particularly bad perturbation x+ δ. With tailoring,
the model responds, by changing to weights θx+δ. This leads to a game, where both weights and
inputs are perturbed, similar to: min|∆|<εθ max|δ|<εx Lsup (fθ+∆(x+ δ), y) . However, since we
don’t get to observe y; we optimize the weight perturbation by minimizing Ltailor instead.
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I Tailoring to improve the performance of model-based RL
In model-based reinforcement learning (MBRL) we consider a Markov decision process (MDP) with
state-space S , action-space A and unknown transition distribution p(s′|s, a). Here, we assume access
to a known reward function r(s, a), although this assumption could be relaxed. In MBRL we learn a
deterministic transition model Tθ(s, a)→ s′ from past experience and use it to either learn a policy
or (as done here) to plan good actions by maximizing the reward over some planning horizon H:

a∗t...t+H = arg max
at...t+H−1

H∑
h=1

r (ŝt+h) = arg max
at...t+H−1

H∑
h=1

r (Tθ (st, at...t+h−1))

where Tθ (st, at...t+h−1) = Tθ (. . . Tθ (Tθ (st, at) , at+1) , . . . , at+h−1), i.e. applying Tθ h times.
We also often apply receding-horizon control, where we plan with horizon H , but then only apply the
first action at, observe the next state at+1 and re-plan again. However, in this setting we are optimizing
the output of the transition model with respect to (part of) the input: the actions. Similar to adversarial
examples in the previous section, this often results in the action optimisation finding regions of the
input-space where the model makes overly-optimistic predictions. In order to improve performance it
has been previously proposed to regularize the confidence of the models [Ha and Schmidhuber, 2018],
to make them uncertainty-aware by learning an ensemble of models [Nagabandi et al., 2020], or to
make pessimistic predictions [Kidambi et al., 2020], among many other approaches. Similar to the
adversarial examples experiments, meta-tailoring opens new simple ways of making transition models
more robust.

Figure 4: Meta-tailoring improves the performance
of MBRL in dclaw, a complex manipulation prob-
lem, especially for low-data regimes where the
transition model is imperfect and the prior is thus
useful. We plot one confidence interval for the me-
dian reward bootstrapped from 16 different runs
per configuration. Further increasing the tailoring
learning rate results in (meta-)training instabilities
because the inner loop is highly variable.

In this section, we explain a simple way of using
meta-tailoring to improve transition models in
MBRL. In particular, we can learn an action-
independent model M(st)→ p (st+1) that out-
puts a probability distribution for the next state
given the current state, independently of the ac-
tion at. This model presents a trade-off with
respect to the original model T (s, a): on the
one hand, it is intrinsically uncertain since it
lacks part of the information (the actions); we
thus output a probability distribution in the form
of a mixture of Gaussians to model this uncer-
tainty. On the other hand, it has the advantage of
not being “hackable" by the action-selection pro-
cess, making the planner unable to find overly
confident regions.

More concretely, we first train an action-
independent prediction model to maximize the
log-likelihood M(st) (st+1). Then, when mak-
ing predictions with Tθ(st, at) we use the
action-independent log-likelihood of the action-
dependent predictions as the tailoring loss:
−M(st) (Tθ(st, at)), with a minus sign be-
cause we want to maximize the log-likelihood.
From this we obtain tailored parameters θ(st,at)

and use them to make the final prediction. In meta-tailoring fashion we train these final predictions to
be close to the truth Tθ(st,at)(st, at) ≈ st+1. In practice, we use the first-order version of CNGRAD.

We use this idea and build on PDDM [Nagabandi et al., 2020], which recently showed great results in
model-based reinforcement learning for robotic manipulation problems. Since they use an ensemble
of deep networks Ti(st, at) (to make robust predictions), we independently meta-tailor each network
to leverage a single action-independent learned prior M(st), leaving the rest of PDDM the same. In
figure 4, we observe that meta-tailoring improves the performance of the overall predictive model,
especially during early parts of training when the action-conditioned model has not become accurate.
As expected, once the action-conditioned model is good enough (to get positive reward) meta-tailoring
is not as useful as we do not need the action-independent prior anymore. For more experimental
details, see appendix J.
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J Experimental details of tailoring for model-based Reinforcement Learning

We re-implemented PDDM [Nagabandi et al., 2020] in Pytorch [Paszke et al., 2019]. We keep all of
its hyper-parameters the same between the base inductive version and the meta-tailoring versions. We
note that, in the process, we found out that some of the hyper-parameters for the dclaw environemnt
were wrongly set in their github and instead were correctly specified in their appendix. We could not
reproduce the other complex environment, baoding, and we are currently in conversations with them
trying to reproduce it. This (current) lack of reproducibility has been confirmed by the authors as
well as Github issues raised by other researchers.

There are three main hyper-parameters we tried changing: the learning rate of the likelihood model
(we tried 10−2, 10−3, 10−4, and settled for 10−3), the number of Gaussians (we set it to 5 without
parameter search), and the tailoring learning rate: we tried 10−2, 10−3, 10−4, 10−5 and show 10−3

as large tailoring and 10−4 as small. 10−2 was too unstable to obtain proper results.

A few implementation tricks were required to make training stable:

• We clamped the affine parameters after tailoring between −10 and 10.
• We set a minimum predicted standard deviation of each Gaussian in the mixture of Gaussians

to 10−2, to avoid degenerate Gaussians.
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K Experimental details of physics experiments

Dataset generation As mentioned in the main text, 5-body systems are chaotic and most random
configurations are unstable. To generate our dataset we used Finite Differences to optimize 5-body
dynamical systems that were stable for 200 steps (no planet collisions and no planet outside a
predetermined grid) and then picked the first 100 steps of their trajectories, to ensure dynamical
stability. To generate each trajectory, we randomly initialized 5 planets within a 2D grid of size
w = 600, h = 300, with a uniform probability of being anywhere in the central grid of size w/2, h/2,
each with a mass sampled from a uniform between [0.15, 0.25] (arbitrary units) and with random
starting velocity initialized with a Gaussian distribution. We then use a 4th order Runge-Kutta
integrator to accurately simulate the ODE of the dynamical system until we either reach 200 steps,
two planets get within a certain critical distance from each other or a planet gets outside the pre-
configured grid. If the trajectory reached 200 steps, we added it to the dataset; otherwise we made
a small random perturbation to the initial configuration of the planets and tried again. If the new
perturbation did not reach 200 steps, but lasted longer we kept the perturbation as the new origin
for future initialization perturbations, otherwise we kept our current initialization. Once all the
datasets were generated we picked those below a threshold mean mass and partitioned them randomly
into train and test. Finally, we normalize each of the 25 dimensions (5 planets and for each planet
x,y,vx,vy,m) to have mean zero and standard deviation one. For inputs, we use each state and as
target we use the next state; therefore, each trajectory gives us 100 pairs.

For more details, we attach the code that generated the dataset.

Implementation of tailoring, meta-tailoring and CNGRAD All of our code is implemented in
PyTorch [Paszke et al., 2019], using the higher library [Grefenstette et al., 2019](https://github.
com/facebookresearch/higher) to implement the second-order version of CNGRAD. We imple-
mented a 3-layer feedforward neural network, with a conditional normalization layer after each layer
except the final regression layer. The result of the network was added to the input, thus effectively
predicting the delta between the current state and the next state. For both the first-order and second-
order versions of CNGRAD, we used the detachment of WarpGrad (line 12 in algorithm 1). For more
details, we also attach the implementation of the method.

Compute and hyper-parameter search To keep the evaluation as strict as possible, we searched
all the hyper-parameters affecting the inductive baseline and our tailoring versions with the baseline
and simply copied these values for tailoring and meta-tailoring. For the latter two, we also had to
search for λtailor.

The number of epochs was 1000, selected with the inductive baseline, although more epochs did
not substantially affect performance in either direction. We note that meta-tailoring performance
plateaued earlier in terms of epochs, but we left it the same for consistency. Interestingly, we found
that regularizing the physics loss (energy and momentum conservation) helped the inductive baseline,
even though the training data already has 0 physics loss. We searched over [10−4, 3 · 10−4, 10−3, 3 ·
10−3, 10−2] for the weight assigned to the physics loss and chose 2 · 10−3 for best performance in the
inductive baseline. To balance between energy and momentum losses we multiplied the momentum
loss by 10 to roughly balance their magnitudes before adding them into a single physics loss, this
weighting was not searched. We copied these settings for meta-tailoring.

In terms of the neural network architecture, we chose a simple model with 3 hidden layers of the same
size and tried [128, 256, 512] on the inductive baseline, choosing 512 and deciding not to go higher
for compute reasons and because we were already able to get much lower training loss than test loss.
We copied these settings for the meta-tailoring setup. We note that since there are approximately
O(m2

h) weight parameters, yet only O(mh) affine parameters used for tailoring, adding tailoring
and meta-tailoring increase parameters roughly by a fraction O(1/mh), or about 0.2%. Also in the
inductive baseline, we tried adding Batch Normalization [Ioffe and Szegedy, 2015], since it didn’t
affect performance we decided not to add it.

We chose the tailoring step size parameter by trying [10−5, 10−4, 10−3, 10−2], finding 10−3 worked
well while requiring less steps than using a smaller step size. We therefore used this step for meta-
tailoring as well, which worked well for first-order CNGRAD, but not for second-order CNGRAD,
whose training diverged. We thus lowered the tailoring step size to 10−4 for the second-order version,
which worked well. We also tried clipping the inner gradients to increase the stability of the second-
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order method; since gains on preliminary experiments were small, we decided to keep it out for
simplicity.

For meta-tailoring we only tried 2 and 5 tailoring steps (we wanted more than one step to show the
algorithm capability, but few tailoring steps to keep inference time competitive). Since they worked
similarly well, we chose 2 steps to have a faster model. For the second-order version we also used
2 steps, which performed much better than the inductive baseline and tailoring, but worse than the
first-order version reported in the main text(about 20% improvement of the second-order version vs.
7% of tailoring and 35% improvement of the first-order version).

For the baseline of optimizing the output we tried a step size of 10−4, 10−3, 10−2, 10−1. Except for
a step size of 10−1, results optimized the physics loss and always achieved a very small improvement,
without overfitting to the physics loss. We thus chose a big learning rate and high number of steps to
report the biggest improvement, of 0.7%.

Runs, compute and statistical confidence: we ran each method 2 times and averaged the results.
Note that the baseline of optimizing the output and tailoring start from the inductive learning baseline,
as they are meant to be methods executed after regular inductive training. This is why both curves
start at the same point in figure 2. For those methods, we report the standard deviation of the mean
estimate of the improvement, since they are executed on the same run. Note that the standard deviation
of the runs would be higher, but less appropriate. For meta-tailoring, we do use the standard deviation
of the mean estimate of both runs, since they are independent from the inductive baseline.

All experiments were performed on a GTX 2080 Ti with 4 CPU cores.
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Figure 5: Decision boundary of our model at multiple levels of robustness on an example
from [Ilyas et al., 2019].

L Toy adversarial examples experiment

We illustrate the tailoring process with a simple illuminating example using the data
from [Ilyas et al., 2019]. They use discriminant analysis on the data in figure 5 and obtain the
purple linear separator. It has the property that, under assumptions about Gaussian distribution of the
data, points above the line are more likely to have come from the blue class, and those below, from
the red class. This separator is not very adversarially robust, in the sense that, for many points, a per-
turbation with a small δ would change the assigned class. We improve the robustness of this classifier
by tailoring it using the loss Ltailor(x, θ) = KL(φ(fθ(x)) || φ(fθ(x+ argmax|δ|<ε

∑
j e
fθ(x+δ)j ))),

where KL represents the KL divergence, φ is the logistic function, and φ(fθ(x)i) is the probability of
x being in class i, so that φ(fθ(x)) represents the entire class distribution.

With this loss, we can adjust our parameters θ so that the KL divergence between our prediction at
x is closer to the prediction at perturbed point x+ δ, over all perturbations in radius ε. Each of the
curves in figure 3 corresponds to a decision boundary induced by tailoring the original separator with
a different value for the maximum perturbation ε. Note that the resulting separators are non-linear,
even though we are tailoring a linear separator, because the tailoring is local to the prediction point.
We also have the advantage of being able to choose different values of ε at prediction time.

Hyper-parameters the model does not have any hyper-parameters, as we use the model
from [Ilyas et al., 2019], which is based on the mean µ and standard deviation σ of the Gaussians.
For tailoring, we used a 5 × 5 grid to initialize the inner optimization to find the point of highest
probability within the ε-ball. Using a single starting point did not work as gradient descent found a
local optima. Using more (10× 10) did not improve results further, while increasing compute. We
also experimented between doing a weighted average of the predictions by their energy to compute
the tailoring loss or picking the element with the biggest energy. Results did not seem to differ much
(likely because likelihood distributions are very peaked), so we picked the simplest option of imitating
the element of highest probability. Doing a single tailoring step already worked well (we tried step
sizes of 10−1, 1, 10, 30 with 10 working best), so we kept that for simplicity and faster predictions.

Regarding compute, this experiment can be generated in a few minutes using a single GTX 2080 Ti.
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σ Method 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.00 2.25 ACR

0.25 RandSmooth 0.75 0.60 0.43 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.416
Meta-tailored 0.80 0.66 0.48 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.452

0.50 RandSmooth 0.65 0.54 0.41 0.32 0.23 0.15 0.09 0.04 0.00 0.00 0.491
Meta-tailored 0.68 0.57 0.45 0.33 0.23 0.15 0.08 0.04 0.00 0.00 0.542

1.00 RandSmooth 0.47 0.39 0.34 0.28 0.21 0.17 0.14 0.08 0.05 0.03 0.458
Meta-tailored 0.50 0.43 0.36 0.30 0.24 0.19 0.14 0.10 0.07 0.05 0.546

Figure 6: Percentage of points with certificate above different radii, and average certified radius
(ACR) for on the CIFAR-10 dataset. Meta-tailoring improves the Average Certification Radius by
8.6%, 10.4%, 19.2% respectively. Results for [Cohen et al., 2019] are taken from [Zhai et al., 2020]
because they add more measures than the original work, with similar results.

σ Method 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.00 2.25 ACR

0.25

RandSmooth 0.75 0.60 0.43 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.416
Salman 0.74 0.67 0.57 0.47 0.00 0.00 0.00 0.00 0.00 0.00 0.538
MACER 0.81 0.71 0.59 0.43 0.00 0.00 0.00 0.00 0.00 0.00 0.556
Meta-tailored 0.80 0.66 0.48 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.452

0.50

RandSmooth 0.65 0.54 0.41 0.32 0.23 0.15 0.09 0.04 0.00 0.00 0.491
Salman 0.50 0.46 0.44 0.40 0.38 0.33 0.29 0.23 0.00 0.00 0.709
MACER 0.66 0.60 0.53 0.46 0.38 0.29 0.19 0.12 0.00 0.00 0.726
Meta-tailored 0.68 0.57 0.45 0.33 0.23 0.15 0.08 0.04 0.00 0.00 0.542

1.00

RandSmooth 0.47 0.39 0.34 0.28 0.21 0.17 0.14 0.08 0.05 0.03 0.458
Salman 0.45 0.41 0.38 0.35 0.32 0.28 0.25 0.22 0.19 0.17 0.787
MACER 0.45 0.41 0.38 0.35 0.32 0.29 0.25 0.22 0.18 0.16 0.792
Meta-tailored 0.50 0.43 0.36 0.30 0.24 0.19 0.14 0.10 0.07 0.05 0.546

Figure 7: Percentage of points with certificate above different radii, and average certified radius
(ACR) for on the CIFAR-10 dataset, comparing with SOA methods. In contrast to pretty competitive
results in ImageNet, meta-tailoring improves randomized smoothing, but not enough to reach SOA.
It is worth noting that the SOA algorithms could also likely be improved via meta-tailoring.

M Experimental details of adversarial experiments

Results for CIFAR-10 experiments can be found in table 6, 7; results for ImageNet comparing to
state-of-the-art methods can be found in 8.

Hyper-parameters and other details of the experiments there are just three hyper-parameters
to tweak for these experiments, as we try to remain as close as possible to the experiments
from [Cohen et al., 2019]. In particular, we tried different added noises ν ∈ [0.05, 0.1, 0.2] and
tailoring inner steps λ ∈ [10−3, 10−2, 10−1, 100] for σ = 0.5. To minimize compute, we tried these
settings by tailoring (not meta-tailoring) the original model and seeing its effects on the smooth-
ness and stability of optimization, choosing ν = 0.1, λ = 0.1 (the fact that they’re the same is a
coincidence). We chose to only do a single tailoring step to reduce the computational burden, since
robustness certification is very expensive, as each example requires 100k evaluations (see below). For
simplicity and to avoid excessive tuning, we chose the hyper-parameters for σ = 0.5 and copied them
for σ = 0.25 and σ = 1. As mentioned in the main text, σ = 1 required initializing our model with
that of [Cohen et al., 2019] (training wasn’t stable otherwise), which is easy to do using CNGRAD.

In terms of implementation, we use the codebase of [Cohen et al., 2019](https://github.com/
locuslab/smoothing) extensively, modifying it only in a few places, most notably in the architec-
ture to include tailoring in its forward method. It is also worth noting that we had to deactivate their
disabling of gradients during certification, because tailoring requires gradients. We chose to use the
first-order version of CNGRAD which made it much easier to keep our implementation very close to
the original. It is likely that doing more tailoring steps would result in better performance.
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σ Method 0.0 0.5 1.0 1.5 2.0 2.5 3.0 ACR

0.25

RandSmooth 0.67 0.49 0.00 0.00 0.00 0.00 0.00 0.470
Salman 0.65 0.56 0.00 0.00 0.00 0.00 0.00 0.528
MACER 0.68 0.57 0.00 0.00 0.00 0.00 0.00 0.544
Meta-tailored RS 0.72 0.55 0.00 0.00 0.00 0.00 0.00 0.494

0.50

RandSmooth 0.57 0.46 0.37 0.29 0.00 0.00 0.00 0.720
Salman 0.54 0.49 0.43 0.37 0.00 0.00 0.00 0.815
MACER 0.64 0.53 0.43 0.31 0.00 0.00 0.00 0.831
Meta-tailored RS 0.66 0.54 0.42 0.31 0.00 0.00 0.00 0.819

1.00

RandSmooth 0.44 0.38 0.33 0.26 0.19 0.15 0.12 0.863
Salman 0.40 0.38 0.33 0.30 0.27 0.25 0.20 1.003
MACER 0.48 0.37 0.34 0.30 0.25 0.18 0.14 1.008
Meta-tailored RS 0.52 0.45 0.36 0.31 0.24 0.20 0.15 1.032

Figure 8: Percentage of points with certificate above different radii, and average certified radius
(ACR) for on the ImageNet dataset, including other SOA methods. Randomized smoothing with
meta-tailoring are very competitive with other SOA methods, including having the largest percentage
of certification at radius 0 and the biggest ACR for σ = 1.

We note that other works focused on adversarial examples, such as [Zhai et al., 2020,
Salman et al., 2019], improve on [Cohen et al., 2019] by bigger margins. However, tailoring and
meta-tailoring can also improve a broad range of algorithms in applications outside of adversarial
examples. Moreover, they could also improve these new algorithms further, as these algorithms can
also be tailored and meta-tailored.

Compute requirements For the CIFAR-10 experiments building on [Cohen et al., 2019], each
training of the meta-tailored method was done in a single GTX 2080 Ti for 6 hours. Certification was
much more expensive (10k examples with 100k predictions each for a total of 109 predictions). Since
certifications of different images can be done in parallel, we used a cluster consisting of 8 GTX 2080
Ti, 16 Tesla V-100, and 40 K80s (which are about 5 times slower), during 36 hours.

For the ImageNet experiments, we fine-tuned the original models for 5 epochs; each took 18 hours
on 1 Tesla V-100. We then used 30 Tesla V-100 for 20 hours for certification.
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