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Abstract

A long-standing goal in dynamical systems is to construct reduced-order models
for high-dimensional spatiotemporal data that capture the underlying parametric
dependence of the data. In this work, we introduce a deep learning technique
to discover a single low-dimensional model for such data that captures the un-
derlying parametric dependence in terms of a normal form. A normal form is a
symbolic expression, or universal unfolding, that describes how a the reduced-order
differential equation model varies with respect to a bifurcation parameter. Our
approach introduces coupled autoencoders for the state and parameter, with the
latent variables constrained to adhere to a given normal form. We demonstrate
our method on one-parameter bifurcations that occur in the canonical Lorenz96
equations and a neural field equation. This method demonstrates how normal
forms can be leveraged as canonical and universal building blocks in deep learning
approaches for model discovery and reduced-order modeling.

1 Introduction

Discovery of reduced-order models from high-dimensional spatiotemporal data is central to a quali-
tative understanding of underlying characteristics in dynamics [1, 2]. Current approaches include
modal decomposition techniques, such as proper orthogonal decomposition (POD) and dynamic
mode decomposition (DMD), which approximate low-dimensional projections by using linear maps
between snapshots in time [3, 4, 5, 6, 7, 8, 9]. These methods are reinforced by model discov-
ery techniques, such as sparse identification of nonlinear dynamics (SINDy), which can uncover
parsimonious nonlinear models from data [10, 11]. However, the techniques above depend on a
predefined candidate library of basis functions. Recent work has focused on combining model
discovery and reduced-order modeling methods with neural networks and deep learning to remove
this dependency [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25].

These methods, however, do not directly deal with temporal datasets originating from a single
physical system across different experimental conditions and parametrizations. Such data can exhibit
topological inequivalence [26], where two time-traces from the data cannot be mapped onto each
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Figure 1: Overview of the state-of-the-art in the reduced-order modeling of parametric systems (left),
resulting in isolated models for each parameter value. Our novel approach (right), uncovers a single
parameterized equation (i.e., a normal form) that captures the parametric dependence across the data.

other by continuous invertible transformations. This presents a challenge for the aforementioned
methods, as observations from a single physical system might yield irreconcilably different low-
dimensional models. In this work, we present a first deep learning approach that extracts a single
low-dimensional model, and its parametric dependence, from high dimensional temporal data of a
single physical system across different experimental conditions.

A summary is presented in Fig. 1. The resulting low-dimensional models are normal form equations,
which describe universal behaviour of transitions in topological equivalence (called bifurcations) [1,
26]. We do so by using neural networks that transform observations of states and parameters
simultaneously while constraining the transformed variables to normal form equations. In this
work, we focus on observations corresponding to a single bifurcation only. Moreover, the resulting
transformation can be interpreted as a restriction of high-dimensional dynamics to the underlying
low-dimensional theoretical center manifold, on which the interesting transitions occur.

2 Methods

Figure 2 describes the neural network architecture, the loss functions and the normal forms we
consider. The architecture is composed of two fully connected adjoint autoencoders (Φ1, ϕ1) and
(Φ2, ϕ2). They encode state x and parameter α to the respective latent state z and parameter β such
that ẋ = f(x, α), and ż = g(z, β) is a normal form equation. The architecture is inspired from [19]
where we now add an extra autoencoder for the parameters α. The various normal forms, with their
equations and representative phase portraits are also presented in Fig. 2.

Loss function: We also show the loss function, that is composed of three kinds of terms. The
‘decoder loss’ refers to the two autoencoder loss terms. The ‘consistency loss’ couples the two
autoencoders by constraining the latent variables z and β to the normal form equation ż = g(z, β).
Inductive biases are introduced in the ‘orientation loss’ that is composed of two terms, the zero-loss
(λ5‖Φ1(0)‖1) and the parameter-orientation loss. We motivate these terms here.

Figure 2: Summary of the method. We show the network architecture, the various normal forms
considered in this work, and the loss function we use to constrain the data to the normal form.
Throughout the work, we set λ1 = λ2 = λ5 = λ6 = 1, and λ2 = λ3 = 10−3.

Existence and uniqueness: First, we note that the theory of normal forms and bifurcations guarantee
a solution for the neural network parameters Φi, ϕi. For any high-dimensional system undergoing
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Figure 3: Results for the 1D system Eq. 1. For each bifurcation, 10 test traces are concatenated and
presented. In all cases, training and test data contain 500 and 20 traces, respectively. The gray area
shows an ensemble of 50 simulated trajectories. Φ1 and ϕ1 have widths [20, 20] and [10, 10].

a bifurcation, there exists a smooth transformation to a low-dimensional center manifold such that
the dynamics on this manifold are described by the normal form equations [1, 26]. In our case,
the transformation is smooth as we always use elu activation functions. Moreover, as a byproduct
the autoencoder determines the center manifold. In classical literature on obtaining normal form
equations [26], the center manifold is explicitly constructed which is only feasible for low-dimensional
models. In order to use center manifold theory, the bifurcation in the original system ẋ = f(x, α)
is always shifted to (x, α) = (0, 0). In our training and test data we ensure this by appropriately
translating the dataset. However, the center manifold is not unique. Thus, there may exist multiple
solutions Φi, ϕi .

Inductive bias: In order to deal with non-uniqueness and underlying local minima, we introduce the
zero loss and the parameter-orientation loss. The zero loss forces the autoencoder to recognize that a
zero solution in the original dynamics must correspond to a zero solution in the latent dynamics. This
is necessary to make sure that we take into account the existence of the trivial solution in the normal
form equation as an equilibrium in most cases. The parameter orientation loss fixes the direction of
the bifurcation for the latent dynamics, by making sure that α and β have the same sign, thereby
eliminating several local minima.

Training: Initial conditions and parameters are chosen from a uniform distribution. They are shuffled
and paired together, and then used together to simulate time traces, that form test and training data.
Training is performed for 200 epochs with batch size 100 or till the test loss stabilizes, which is to
≈ 1× 10−2 in all examples.

3 Results

In this section we present the use of our approach on a few examples, showcasing the most important
local codimension one bifurcations: saddle-node, transcritical, pitchfork and Hopf.

1D system with several bifurcations. We start by looking at the following scalar ODE that contains
multiple bifurcations,

ẋ = γx(α− αpf − x2)(α− αsn + (x− xsn)2), (1)

where we set γ = 0.01, xsn = αsn = −6 and αpf = 6. Fig. 3 shows the bifurcation diagram for
Eq. (1). The system exhibits saddle-node (at (x, α) = (−6,−6)), pitchfork (at (x, α) = (0, 6)) and
transcritical (at (x, α) = (0,−30)) bifurcations. Using affine linear transformations of x and α, we
reorient Eq. 1 around each bifurcation point. We construct training and test data by simulating for
various parameter values; 10 such test traces clubbed together are presented for each bifurcation
scenario (in blue) in Fig. 3.

Results are presented in Fig. 3. We show learned test data (blue) and normal form simulations
(gray), together for 10 traces. These traces correspond to different initial values and parameters. The
simulations are performed by using the learned parameter and initial condition from the learned time
traces. We observe agreement across different cases, for all bifurcation scenarios. We note that the
parameter orientation loss was not used (λ5 = 0) in the transcritical case, to allow the parameters
(blue) to orient themselves properly with respect to the normal form (α 7→ −α). In the remaining
two bifurcations, the learned (blue) and original (orange) parameters have the same sign. Moreover,
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Figure 4: Results for the two high-dimensional systems, Eq.2 and Eq. 3. In both cases, training and
test data contain 1000 and 20 traces, respectively. Φ1 has widths [32, 16] (Lorenz96) and [64, 32, 16]
(Neural field). ϕ1 has widths [16, 16] in both cases.

in the case of pitchfork and transcritical bifurcations, the zero loss ensures that the trivial equilibrium
x = 0 is preserved.

Hopf bifurcation in the Lorenz96 system. The Lorenz96 equations [27] are used widely in model
discovery and data assimilation problems. The equations are given by

ẋj = −xj−1(xj−2 − xj+1)− xj + α (2)

for j = 1, 2, 3...N with boundary conditions x1 = xN and x2 = xN−1. In this work we set N = 64.
For this choice of N , the trivial equilibrium x = α undergoes a supercritical Hopf bifurcation with
respect to α at α = α0 = 0.84975 [28]. Using affine linear transformations of x and α, we first
reorient Eq. 2 around (x, α) = (α0, α0) such that the bifurcation now occurs at (x, α) = (0, 0).
Simulations of the system before and after the bifurcation point are shown in Fig. 4. For α < 0, we
observe the existence of a stable stationary solution, while for α > 0 we observe a spatiotemporal
stripe pattern, which is interpreted as a travelling wave.

Results are presented in Fig. 4. For two choices of α on different sides of the bifurcation point, we
plot learned (blue) and simulated time traces from test data, that match well qualitatively. The high
dimensional periodic pattern is encoded to a stable periodic solution, and the stationary solution
is encoded into a damped oscillation. The encoding of the time traces match well with parameter
encoding, as the sign of the original parameters (orange) is the same as the learned parameters (blue).

Hopf bifurcation in a neural field equation. Next, we consider a neural field equation describing
the neuronal potential for a one-dimensional continuum of neural tissue [29, 30]. The spatiotemporal
dynamics due to an input inhomogeneity lead to a Hopf bifurcation of a stationary pattern leading to
breathers when varying the input strength [31, 32]. The equations are given by,

u̇ = −u− κa+ (w ∗ f(u)) + I(x),

ȧ = (−a+ u)/τnf . (3)

The operator ∗ represents a spatial convolution. w(x) ≡ w(x − y) = we exp(−((x − y)/σe)
2)

is the spatial connectivity kernel and f(u) is the potential-dependent sigmoidal firing rate given
by f(u) = (1 + exp(βnf (u− uthr ))). The spatially non-uniform input I(x) is given by I(x) =
α exp(−(x/σ)2).

We fix κ = 2.75, τnf = 10, we = 1, σe = 1, βnf = 6, uthr = 0.375, σ = 1.2. The parameter α
is used as the bifurcation parameter. A supercritical Hopf bifurcation with respect to a stationary
bump response occurs at α = 0.8040. States u, a are discretized over a uniform grid of size 64 each.
Like before, we first reorient Eq. 3 such that the bifurcation occurs at (u, a, α) = (0, 0, 0). Setting
α < 0 produces the globally asymptotically stable stationary bump response. This is shown for the
variable u in Fig. 4. For α > 0, we see that the stationary bump loses stability and the emerging
asymptotically stable periodic solution expands and contracts, referred to as ‘breathers’ [32].

Results are presented in Fig. 4. Similar to the Lorenz96 case, we present learned test data for two
cases, α < 0 and α > 0. Once again, the qualitative behaviour of the time-traces match the Hopf
normal form dynamics and are supported by the parameter encodings. The sign of the learned
parameters are the same as the original parameters. In both Lorenz96 and the neural field equations,
fixing the orientation loss helps avoid local minima and other symmetry-induced feasible solutions
by fixing the sign of the learned parameters and thus, the direction of the bifurcation.
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Conclusion

We have demonstrated a deep learning approach to uncover a coordinate transformation into a single,
parameterized normal form equation that describes the parametric dependence of a data set over a
range of values. Our approach has consequences for dynamical systems theory and data-driven model
discovery alike. The approach can be extended to discover underlying low-dimensional models by
using normal forms as building blocks. On the other hand, this presents a novel method to compute
center manifold restrictions, which is an important problem in applied dynamical systems theory.
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