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Abstract

Disentanglement has seen much work recently for its interpretable properties and
the ease at which it can be induced in the latent representations of variational auto-
encoders. As a concept, disentanglement has proven hard to precisely define, with
many interpretations leading to different metrics which do not necessarily agree.
Higgins et al. [2018] offer a precise definition of a linear disentangled represen-
tation which is grounded in the symmetries of the data. In this work we focus on
cyclic symmetry structure. We examine how VAE posterior distributions are af-
fected by different observations of the same problem and find that cyclic structure
is encouraged even when it is not explicitly observed. We then find that better prior
distributions, found via normalising flows, result in faster convergence and lower
encoding costs than the standard Gaussian. We also find that linear representations
can be distinguished from standard ones solely through disentanglement metrics
scores, possibly due to their highly structured posteriors. Finally, we find prelim-
inary evidence that linear disentangled representations offer better data efficiency
than standard disentangled representations.

1 Introduction

Symmetry based disentangled representation learning (SBDRL) [Higgins et al., 2018] recently pro-
vided a concrete definition for linear disentangled representations, a form of disentanglement that is
defined with respect to symmetry groups acting on the data. The resulting representations are par-
ticularly interpretable since we can relate independent representational subspaces to the actions of
symmetries in the data. These symmetries might relate to concepts such as translation of an object
in the scene or its orientation. This work will focus on linear disentangled representations learnt by a
variational auto-encoder (VAE) [Kingma and Welling, 2014] and their structure under the influence
of cyclic symmetry structures. We first provide a brief overview of the SBDRL framework.

SBDRL VAE representation learning is concerned with the mapping from an observation space
(generally images) O ⊂ Rnx×ny to a vector space Z ⊂ Rl known as the latent space. SBDRL
includes the additional construct of a world spaceW ⊂ Rd containing the possible states which are
represented by observations. There exists a generative process b : W → O and a inference process
h : O → Z , the latter being accessible and parametrised by the VAE encoder. SBDRL assumes for
convenience that both h and b are injective.

SBDRL proposes to disentangle symmetries of the world space, the result of actions ·W : G×W →
W by the symmetry groupG = G1×· · ·×Gs on the world space. The component groupsGi reflect
the individual symmetries and the particular decomposition need not be unique. SBDRL provides
us with the following definition:
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Table 1: Definition of FlatLand variants, example samples and posteriors on an action subspace of a
ForwardVAE. Arrows indicate possible actions. Red arrow indicates action chosen for that sample.

None Contact Gradual

State Space S = {xi|i ∈ [R, 64−R]} S = {xi|i ∈ [R, 64−R]} S = {xi|i ∈ [0, 64]}
Boundaries gx ◦ x64−R, g−1x ◦ xR are

not observed.
gx ◦ x64−R = xR, g−1x ◦
xR = x64−R

gx◦x64 = x1, g−1x ◦x1 =
x64

Samples

Posterior

Definition 1.1. A representation space Z is linearly disentangled with respect to decomposition
G = G1 × · · · ×Gs if:

1. There is a group action ·Z : G×Z → Z

2. The composition f = h ◦ b : W → Z is equivariant with respect to the group actions on
W and Z . i.e. g ·Z f(w) = f(g ·W w) ∀w ∈ W, g ∈ G.

3. There is a decomposition Z = Z1 × · · · × Zs such that Zi is fixed by the action of all
Gj , j 6= i and affected only by Gi

Assuming Z is a real vector space, SBDRL then tells us that linear disentangled representations will
manifest as mappings to Z where actions by Gi are equivalent to irreducible representations. We
note that irreducible representations of cyclic group CN are rotation matrices with angle 2π

N .

2 Cyclic Structure of Prior and Posterior

This section will look at structure of the posterior and prior distributions of linear disentangled
representations with respect to group structureG = CN ×CN . Cyclic structure is the most common
in disentanglement datasets, e.g. FlatLand [Caselles-Dupré et al., 2018] and dSprites [Higgins et al.,
2017] which both exhibit purely cyclic symmetries.

2.1 Cyclic Posterior

Prior work has considered translation of an object to be the result of acting on the world space with
symmetry Cx×Cy , i.e. assume the object warps to the other side when passing the image edge. We
consider FlatLand, a grid world where a single white circular agent moves (with actions up, down,
left or right) over a black background. We can define this problem independently (and equivalently)
forCx andCy by a state space S, actions ◦ and ‘contact’ boundary conditions as provided in Table 1.
Such structure has been learnt by ForwardVAE [Caselles-Dupré et al., 2019], a model which learns
internal representations for group actions by observing transitions and optimising them to be equiv-
ariant with actions on the world space. This is a valid interpretation of the symmetry structure, we
could however consider other boundary conditions such as continuous transitions or no transitions.
These conditions are defined by their states S and boundary conditions in Table 1. The same table
presents the posterior distribution of a ForwardVAE (4 convolutional layers + 3 linear) trained on
each of the possible FlatLand variants. Whilst the model has 4 latent dimensions on this problem,
we present the latent subspace related to vertical translation, allowing us to plot the posterior in 2D.
We can see that all variants result in similar circular structure in the posterior. The cyclic structure
of the contact and gradual warping cases is expected, however it is not immediately obvious why it
is present in the no warping case since it is not explicitly present in the data.
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Figure 1: Comparison of priors under normalising flows.
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Figure 2: Posterior distribution for
different flows early in training. Dot
indicates origin.

We give one potential reason for this by considering expected posterior structure. Without warp-
ing, we have possible states {xR, xR+1, . . . , xN−R} and additional (local) metric knowledge that
d(xi, xj) ∝ |i − j|. This metric knowledge is true visually (moving by a few pixels minimally
changes the image) and under the ‘symmetry’1 (moving from xi to xi+3 requires acting on xi 3
times by generator gx but only once to reach xi+1). If we assume the metric is preserved through
the VAE encoding2 then we would expect the sequence (xi)i to be encoded in a line or curve. We
see from Figure 2a that the divergence loss is required for the posterior to curve around the ori-
gin. Possibly it provides a means to minimise the description length whilst retaining representation
linearity since clustering centres around the origin (marginally) raises density there. Of course, en-
coding Cartesian position across 4 latents instead of 2 is at odds with the minimal description length
objective, however the loss pressure towards reconstructing post action latents appears to overcome
this. Furthermore, the description length is determined by the prior, which we will examine next
under contact boundary conditions.

2.2 Priors

Given that linear disentangled posteriors have consistent and constrained structure, which doesn’t
fit the form of a normal Gaussian, it seems beneficial to explore alternate priors. We will look
specifically at sequentially adapting the posterior through normalising flows thus emulating a change
in prior. We estimate the efficiency of different methods by comparing their expected relative entropy
between posterior and prior. We will present the first 75 epochs of training, so we can compare
convergence rates of flows verses the standard prior and look at how the representations evolve.

We find in Figure 1a that the expected relative entropy achieved by flow based methods is consis-
tently lower than that under the standard Gaussian prior, showing (unsurprisingly) that a normal
Gaussian is a poor choice for cyclic problems. We evidence this further in Figure 1b which reports
the expected post-action observation reconstruction ||xa− x̂a|| for models under the different flows.
We see that all flows again perform similarly whilst the standard prior performs and converges sig-
nificantly worse. The major difference between posteriors for the flows and the standard prior is that
the latter seems to prefer encoding along Cartesian axes, as can be seen by comparing Figure 2b to
Figure 2c. To learn a strong representation under the standard prior, the model has to overcome this
axis-aligning pressure at the expense of relative entropy and slower convergence.

3 Distinguishing Linear Disentangled Representations

Given the highly specific structure of the flatland linear disentangled representations, we should be
able to see evidence of them in disentanglement metrics. In Figure 3 we provide the probability
that an SVM with radial basis function kernels can distinguish a linear disentangled representation
(one coming from ForwardVAE or RGrVAE [Painter et al., 2020]) from a standard one (VAE, β-
VAE [Higgins et al., 2017], CC-VAE [Burgess et al., 2018], FactorVAE [Kim and Mnih, 2018],
DIP-VAE [Kumar et al., 2017]). We find that the classical DCI disentanglement, Completeness
and Informativeness metrics were the most informative classical metrics Interestingly the true inde-
pendence, which measures the extent different groups act on different latent subspaces, was not a

1We use the term symmetry here loosely since we can not relate the sequential observations to any specific
symmetry group - we have not observed actions at all states.

2This seem a reasonable assumption due to the variational sampling z ∼ q(z), at least in the visual sense.
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Figure 3: Relevance of each metric to distin-
guishing linear from classical disentanglement.
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can classify the model correctly from the metric
alone. P [L|N ] is the probability the SVM pre-
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Figure 4: Gradient boosted tree downstream
task on FlatLand.

perfect discriminator on FlatLand, likely due to baselines learning good 1D representations of the
actions. Another interesting result was that rotation matrix angle (trained after the fact to transform
pre-action latent to post-action latent) was not a perfect discriminator (symmetry l1) as you might
expect. Neither were the resulting errors in predicting the post action latent (Rep Mean z2). This
may be down to large number of minima in the loss space resulting in imperfect rotation matrices
being learnt for the linearly disentangled models. We did see poorer performance in the externally
learnt representations compared to those learnt by the model, which supports this possibility.

4 Downstream Tasks

Locatello et al. [2018] found that disentangled representations correlated with improved perfor-
mance in downstream tasks, but not with improved data efficiency, which had previously been given
as a motivator for such work. The standard downstream task for disentangled representation learn-
ing (eg. Locatello et al. [2018], Caselles-Dupré et al. [2019]) is to predict generative factor values
from the latent values. We will compare our models on FlatLand under this task. We should note
that similar to Locatello et al. [2018], we found that the baselines did not consistently converge to
disentangled representations however the majority appeared to do so.

From Figure 4a we can see that all models allowed strong downstream accuracies however the
linearly disentangled models achieved consistently higher scores with lower variance than the base-
lines, suggesting they are stronger representations for downstream tasks. We can also see by Fig-
ure 4b that they have better data efficiency (accuracy based on 100 samples divided by that on 10000
samples) than the baselines. This suggests that the type of disentanglement is important to data effi-
ciency and that the work of Locatello et al. [2018] might not capture this. We stress that this result is
for a simple case and requires evaluation over more datasets and settings to be certain of this claim.

5 Conclusions

Linear disentangled representations offer much more structured distributions than standard disentan-
glement and using SBDRL their structure can be defined very precisely with respect to the symmetry
groups acting on the data. In this work we have shown this structure explicitly for cyclic symmetries
and found that the usual isotropic Gaussian is a poor choice of prior. Due to their structure we are
also able to distinguish linear disentangled representations from baselines purely by their scores on
disentanglement metrics. Finally we find that linear representations are better for the downstream
task of predicting generative factors and offer better data efficiency on the FlatLand dataset, the lat-
ter being interesting given results that show disentanglement in classical models does not correlate
with data efficiency.
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